Experimental and Numerical Investigation of Effect of Static and Fatigue Loading on Behavior of Different Double Strap Adhesive Joint Configurations in Fiber Metal Laminates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35269071
PubMed Central
PMC8911663
DOI
10.3390/ma15051840
PII: ma15051840
Knihovny.cz E-zdroje
- Klíčová slova
- adhesively bonded joints, double strap joint, fatigue loading, fiber metal laminate, finite element analysis, static loading,
- Publikační typ
- časopisecké články MeSH
Double strap lap adhesive joints between metal (AA 6061-T6) and composite (carbon/epoxy) laminates were fabricated and characterized based on strength. Hand layup methods were used to fabricate double strap match lap joints and double strap mismatch lap joints. These joints were compared for their strength under static and fatigue loadings. Fracture toughness (GIIC) was measured experimentally using tensile testing and validated with numerical simulations using the cohesive zone model (CZM) in ABAQUS/Standard. Fatigue life under tension-tension fluctuating sinusoidal loading was determined experimentally. Failure loads for both joints were in close relation, whereas the fatigue life of the double strap mismatch lap joint was longer than that of the double strap match lap joint. A cohesive dominating failure pattern was identified in tensile testing. During fatigue testing, it was observed that inhomogeneity (air bubble) in adhesive plays a negative role while the long time duration between two consecutive cycle spans has a positive effect on the life of joints.
Department of Electrical Engineering The Ibadat International University Islamabad 54590 Pakistan
Department of Mechanical Engineering Technology National Skills University Islamabad 44000 Pakistan
Department of Mechanical Engineering University of Wah Quaid Avenue Wah Cantt 47040 Pakistan
Department of Unmanned Vehicle Engineering Sejong University Seoul 05006 Korea
Zobrazit více v PubMed
Lawcock G., Ye L., Mai Y.-W., Sun C.-T. The Effect of Adhesive Bonding between Aluminum and Composite Prepreg on the Mechanical Properties of Carbon-Fiber-Reinforced Metal Laminates. Compos. Sci. Technol. 1997;57:35–45. doi: 10.1016/S0266-3538(96)00107-8. DOI
Pate K.D. Chapter 25-Applications of Adhesives in Aerospace. In: Dillard D.A., Pocius A.V., Chaudhury M., editors. Adhesion Science and Engineering. Elsevier; Amsterdam, The Netherlands: 2002. pp. 1129–1192.
Straznicky P., Laliberte J., Poon C., Fahr A. Applications of Fiber-metal Laminates. Polym. Compos. 2004;21:558–567. doi: 10.1002/pc.10211. DOI
Ebnesajjad S., editor. Adhesives Technology Handbook. 2nd ed. William Andrew Publishing; Norwich, NY, USA: 2009. Chapter 7-Joint Design; pp. 159–181.
Pethrick R.A. 5.15-Bond Inspection in Composite Structures. In: Kelly A., Zweben C., editors. Comprehensive Composite Materials. Pergamon; Oxford, UK: 2000. pp. 359–392.
Kanerva M., Saarela O. The Peel Ply Surface Treatment for Adhesive Bonding of Composites: A Review. Int. J. Adhes. Adhes. 2013;43:60–69. doi: 10.1016/j.ijadhadh.2013.01.014. DOI
Arenas J.M., Alía C., Narbón J.J., Ocaña R., González C. Considerations for the Industrial Application of Structural Adhesive Joints in the Aluminium–Composite Material Bonding. Compos. Part B Eng. 2013;44:417–423. doi: 10.1016/j.compositesb.2012.04.026. DOI
Arenas M.A., Conde A., de Damborenea J.J. Effect of Acid Traces on Hydrothermal Sealing of Anodising Layers on 2024 Aluminium Alloy. Electrochim. Acta. 2010;55:8704–8708. doi: 10.1016/j.electacta.2010.07.089. DOI
Viejo F., Coy A.E., García-García F.J., Merino M.C., Liu Z., Skeldon P., Thompson G.E. Enhanced Performance of the AA2050-T8 Aluminium Alloy Following Excimer Laser Surface Melting and Anodising Processes. Thin Solid Film. 2010;518:2722–2731. doi: 10.1016/j.tsf.2009.09.121. DOI
Moutarlier V., Gigandet M., Pagetti J., Normand B. Influence of Oxalic Acid Addition to Chromic Acid on the Anodising of Al 2024 Alloy. Surf. Coat. Technol.-SURF COAT TECH. 2004;182:117–123. doi: 10.1016/S0257-8972(03)00875-2. DOI
Chuang W.-Y., Tsai J.-L. Investigating the Performances of Stepwise Patched Double Lap Joint. Int. J. Adhes. Adhes. 2013;42:44–50. doi: 10.1016/j.ijadhadh.2013.01.005. DOI
Benyahia F., Albedah A., Bachir Bouiadjra B. Analysis of the Adhesive Damage for Different Patch Shapes in Bonded Composite Repair of Aircraft Structures. Mater. Des. (1980–2015) 2014;54:18–24. doi: 10.1016/j.matdes.2013.08.024. DOI
Meneghetti G., Quaresimin M., Ricotta M. Damage Mechanisms in Composite Bonded Joints under Fatigue Loading. Compos. Part B Eng. 2012;43:210–220. doi: 10.1016/j.compositesb.2011.07.009. DOI
Quaresimin M., Ricotta M. Fatigue Behaviour and Damage Evolution of Single Lap Bonded Joints in Composite Material. Compos. Sci. Technol. 2006;66:176–187. doi: 10.1016/j.compscitech.2005.04.026. DOI
Sandu M., Sandu A., Constantinescu D.M., Apostol D.A. Single-Strap Adhesively Bonded Joints with Square or Tapered Adherends in Tensile Test Conditions. Int. J. Adhes. Adhes. 2013;44:105–114. doi: 10.1016/j.ijadhadh.2013.01.020. DOI
Akpinar S. Effects of Laminate Carbon/Epoxy Composite Patches on the Strength of Double-Strap Adhesive Joints: Experimental and Numerical Analysis. Mater. Des. 2013;51:501–512. doi: 10.1016/j.matdes.2013.04.037. DOI
Lee H.K., Pyo S.H., Kim B.R. On Joint Strengths, Peel Stresses and Failure Modes in Adhesively Bonded Double-Strap and Supported Single-Lap GFRP Joints. Compos. Struct. 2009;87:44–54. doi: 10.1016/j.compstruct.2007.12.005. DOI
Fawzia S., Al-Mahaidi R., Zhao X.-L. Experimental and Finite Element Analysis of a Double Strap Joint between Steel Plates and Normal Modulus CFRP. Compos. Struct. 2006;75:156–162. doi: 10.1016/j.compstruct.2006.04.038. DOI
Park J.-H., Choi J.-H., Kweon J.-H. Evaluating the Strengths of Thick Aluminum-to-Aluminum Joints with Different Adhesive Lengths and Thicknesses. Compos. Struct. -COMPOS STRUCT. 2010;92:2226–2235. doi: 10.1016/j.compstruct.2009.08.037. DOI
Nguyen T.-C., Bai Y., Zhao X., Al-Mahaidi R. Mechanical Characterization of Steel/CFRP Double Strap Joints at Elevated Temperatures. Compos. Struct. 2011;93:1604–1612. doi: 10.1016/j.compstruct.2011.01.010. DOI
Nguyen T.-C., Bai Y., Zhao X.-L., Al-Mahaidi R. Durability of Steel/CFRP Double Strap Joints Exposed to Sea Water, Cyclic Temperature and Humidity. Compos. Struct. 2012;94:1834–1845. doi: 10.1016/j.compstruct.2012.01.004. DOI
Bernasconi A., Jamil A., Moroni F., Pirondi A. A Study on Fatigue Crack Propagation in Thick Composite Adhesively Bonded Joints. Int. J. Fatigue. 2013;50:18–25. doi: 10.1016/j.ijfatigue.2012.05.018. DOI
Francine R., Desplanques Y., Degallaix S. Fatigue of Glass/Epoxy Composite in Three-Point-Bending with Predominant Shearing. Int. J. Fatigue. 2002;24:327–337. doi: 10.1016/S0142-1123(01)00088-3. DOI
Sinmazcelik T., Avcu E., Bora M., Coban O. A Review: Fibre Metal Laminates, Background, Bonding Types and Applied Test Methods. Mater. Des. -MATER DESIGN. 2011;32:3671–3685. doi: 10.1016/j.matdes.2011.03.011. DOI
Al-Zubaidy H., Al-Mahaidi R., Zhao X.-L. Finite Element Modelling of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings. Compos. Struct. 2013;99:48–61. doi: 10.1016/j.compstruct.2012.12.003. DOI
Campilho R.D.S.G., Banea M.D., Neto J.A.B.P., da Silva L.F.M. Modelling Adhesive Joints with Cohesive Zone Models: Effect of the Cohesive Law Shape of the Adhesive Layer. Int. J. Adhes. Adhes. 2013;44:48–56. doi: 10.1016/j.ijadhadh.2013.02.006. DOI
He X. A Review of Finite Element Analysis of Adhesively Bonded Joints. Int. J. Adhes. Adhes.-INT J ADHES ADHES. 2011;31:248–264. doi: 10.1016/j.ijadhadh.2011.01.006. DOI
Cho J.U., Lee S.K., Cho C., Rodriguez Sanchez F.S., Blackman B.R.K., Kinloch A.J. A Study on the Impact Behavior of Adhesively-Bonded Composite Materials. J. Mech. Sci. Technol. 2007;21:1671. doi: 10.1007/BF03177392. DOI
Cheuk P.T., Tong L., Wang C.-H., Baker A., Chalkley P. Fatigue Crack Growth in Adhesively Bonded Composite-Metal Double-Lap Joints. Compos. Struct. 2002;57:109–115. doi: 10.1016/S0263-8223(02)00074-0. DOI
Trzepieciński T., Najm S.M., Sbayti M., Belhadjsalah H., Szpunar M., Lemu H.G. New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications. J. Compos. Sci. 2021;5:217. doi: 10.3390/jcs5080217. DOI
Vermeeren C.A.J.R. An Historic Overview of the Development of Fibre Metal Laminates. Appl. Compos. Mater. 2003;10:189–205. doi: 10.1023/A:1025533701806. DOI
Bieniaś J., Jakubczak P., Surowska B. 11-Properties and Characterization of Fiber Metal Laminates. In: Thakur V.K., Thakur M.K., Pappu A., editors. Hybrid Polymer Composite Materials. Woodhead Publishing; Sawston, UK: 2017. pp. 253–277.
Li H., Hu Y., Fu X., Zheng X., Liu H., Tao J. Effect of Adhesive Quantity on Failure Behavior and Mechanical Properties of Fiber Metal Laminates Based on the Aluminum–Lithium Alloy. Compos. Struct. 2016;152:687–692. doi: 10.1016/j.compstruct.2016.05.098. DOI
Kolanu N.R., Raju G., Ramji M. A Unified Numerical Approach for the Simulation of Intra and Inter Laminar Damage Evolution in Stiffened CFRP Panels under Compression. Compos. Part B Eng. 2020;190:107931. doi: 10.1016/j.compositesb.2020.107931. DOI
Rozylo P. Failure Analysis of Thin-Walled Composite Structures Using Independent Advanced Damage Models. Compos. Struct. 2021;262:113598. doi: 10.1016/j.compstruct.2021.113598. DOI
Tan P. Numerical Simulation of the Ballistic Protection Performance of a Laminated Armor System with Pre-Existing Debonding/Delamination. Compos. Part B Eng. 2014;59:50–59. doi: 10.1016/j.compositesb.2013.10.080. DOI
Masud M., Al Kharusi M.S., Ali M.U., Mubashar A., Hussain S.J., Tariq A., Rehman G.U., Akhtar M.H., Javeed S. Prediction of the Ultimate Strength of Notched and Unnotched IM7/977-3 Laminated Composites Using a Micromechanics Approach. Polymers. 2021;13:3491. doi: 10.3390/polym13203491. PubMed DOI PMC
Shah S.Z.H., Megat-Yusoff P.S.M., Karuppanan S., Choudhry R.S., Sajid Z. Multiscale Damage Modelling of 3D Woven Composites under Static and Impact Loads. Compos. Part A Appl. Sci. Manuf. 2021;151:106659. doi: 10.1016/j.compositesa.2021.106659. DOI
Kim H.-K., Park E.-T., Song W.-J., Kang B.-S., Kim J. Experimental and Numerical Investigation of the High-Velocity Impact Resistance of Fiber Metal Laminates and Al 6061-T6 by Using Electromagnetic Launcher. J. Mech. Sci. Technol. 2019;33:1219–1229. doi: 10.1007/s12206-019-0222-4. DOI
ASM International . ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International; Novelty, OH, USA: 1990.
Lin C.T., Kao P.W., Yang F.S. Fatigue Behaviour of Carbon Fibre-Reinforced Aluminium Laminates. Composites. 1991;22:135–141. doi: 10.1016/0010-4361(91)90672-4. DOI
Khan F., Qayyum F., Asghar W., Azeem M., Anjum Z., Nasir A., Shah M. Effect of Various Surface Preparation Techniques on the Delamination Properties of Vacuum Infused Carbon Fiber Reinforced Aluminum Laminates (CARALL): Experimentation and Numerical Simulation. J. Mech. Sci. Technol. 2017;31:5265–5272. doi: 10.1007/s12206-017-1019-y. DOI
Huntsman Advanced Materials . Advanced Materials. Huntsman Advanced Materials; Woodloch, TX, USA: 2010. Araldite® LY 5052/Aradur® 5052* COLD CURING EPOXY SYSTEMS.
Wegman R.F., van Twisk J. 2-Aluminum and Aluminum Alloys. In: Wegman R.F., van Twisk J., editors. Surface Preparation Techniques for Adhesive Bonding. 2nd ed. William Andrew Publishing; Norwich, NY, USA: 2013. pp. 9–37.
Critchlow G.W., Brewis D.M. Review of Surface Pretreatments for Aluminium Alloys. Int. J. Adhes. Adhes. 1996;16:255–275. doi: 10.1016/S0143-7496(96)00014-0. DOI
Davis M., Bond D. Principles and Practices of Adhesive Bonded Structural Joints and Repairs. Int. J. Adhes. Adhes. 1999;19:91–105. doi: 10.1016/S0143-7496(98)00026-8. DOI
Standard Test Method for Strength Properties of Double Lap Shear Adhesive Joints by Tension Loading. ASTM; West Conshohocken, PA, USA: 2016.
Rotwitt P.B. Master’s Thesis. University of Oslo; Oslo, Norway: 2013. Fatigue Life Extension Using Composite Patch Repairs.
Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal) ASTM; Novelty, OH, USA: 2019.
Standard Test Method for Fatigue Properties of Adhesives in Shear by Tension Loading (Metal/Metal) ASTM; Novelty, OH, USA: 2020.
Systèmes D. Abaqus Standard and Abaqus Documentation for Version 6.14. Dassault Syst. Simulia Corp. 2014;651:2–6.