Multi Swarm Optimization Based Clustering with Tabu Search in Wireless Sensor Network
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35270885
PubMed Central
PMC8915121
DOI
10.3390/s22051736
PII: s22051736
Knihovny.cz E-zdroje
- Klíčová slova
- cluster head (CH), energy consumption, metaheuristics, particle swarm optimization (PSO), wireless energy transfer,
- Publikační typ
- časopisecké články MeSH
Wireless Sensor Networks (WSNs) can be defined as a cluster of sensors with a restricted power supply deployed in a specific area to gather environmental data. One of the most challenging areas of research is to design energy-efficient data gathering algorithms in large-scale WSNs, as each sensor node, in general, has limited energy resources. Literature review shows that with regards to energy saving, clustering-based techniques for data gathering are quite effective. Moreover, cluster head (CH) optimization is a non-deterministic polynomial (NP) hard problem. Both the lifespan of the network and its energy efficiency are improved by choosing the optimal path in routing. The technique put forth in this paper is based on multi swarm optimization (MSO) (i.e., multi-PSO) together with Tabu search (TS) techniques. Efficient CHs are chosen by the proposed system, which increases the optimization of routing and life of the network. The obtained results show that the MSO-Tabu approach has a 14%, 5%, 11%, and 4% higher number of clusters and a 20%, 6%, 14%, and 6% lesser average packet loss rate as compared to a genetic algorithm (GA), differential evolution (DE), Tabu, and MSO based clustering, respectively. Moreover, the MSO-Tabu approach has 136%, 36%, 136%, and 38% higher lifetime computation, and 22%, 16%, 51%, and 12% higher average dissipated energy. Thus, the study's outcome shows that the proposed MSO-Tabu is efficient, as it enhances the number of clusters formed, average energy dissipated, lifetime computation, and there is a decrease in mean packet loss and end-to-end delay.
Data Analytics Lab REST Labs Kaveripattinam Krishnagiri 635112 India
Department of Computer and Communication Sri Sairam Institute of Technology Chennai 600044 India
Zobrazit více v PubMed
Kaur S., Mahajan R. Hybrid meta-heuristic optimization-based energy efficient protocol for wireless sensor networks. Egypt. Inform. J. 2018;19:145–150. doi: 10.1016/j.eij.2018.01.002. DOI
Loganathan S., Arumugam J. Energy Efficient Clustering Algorithm Based on Particle Swarm Optimization Technique for Wireless Sensor Networks. Wirel. Pers. Commun. 2021;119:815–843. doi: 10.1007/s11277-021-08239-z. DOI
Gupta R.K., Pandey A., Nandi A. Lifetime Enhancement of WSN Using Evolutionary Clustering and Routing Algorithms; Proceedings of the 2018 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS); Bhopal, India. 24–25 February 2018; Piscataway, NJ, USA: IEEE; 2018. pp. 1–6. DOI
Das I., Shaw R.N., Das S. Innovations in Electrical and Electronic Engineering. Springer; Singapore: 2021. Location-Based and Multipath Routing Performance Analysis for Energy Consumption in Wireless Sensor Networks; pp. 775–782.
Giorgetti A., Lucchi M., Tavelli E., Barla M., Gigli G., Casagli N., Chiani M., Dardari D. A robust wireless sensor network for landslide risk analysis: System design, deployment, and field testing. IEEE Sens. J. 2016;16:6374–6386. doi: 10.1109/JSEN.2016.2579263. DOI
Wan Z., Liu S., Ni W., Xu Z. An energy-efficient multi-level adaptive clustering routing algorithm for underwater wireless sensor networks. Clust. Comput. 2019;22:14651–14660. doi: 10.1007/s10586-018-2376-8. DOI
Fu X., Yang Y., Postolache O. Invulnerability of clustering wireless sensor networks against cascading failures. IEEE Syst. J. 2018;13:1431–1442. doi: 10.1109/JSYST.2018.2849779. DOI
Younis O., Krunz M., Ramasubramanian S. Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Netw. 2006;20:20–25. doi: 10.1109/MNET.2006.1637928. DOI
Abbasi A.A., Younis M. A survey on clustering algorithms for wireless sensor networks. Comput. Commun. 2007;30:2826–2841. doi: 10.1016/j.comcom.2007.05.024. DOI
Wohwe Sambo D., Yenke B.O., Förster A., Dayang P. Optimized clustering algorithms for large wireless sensor networks: A review. Sensors. 2019;19:322. doi: 10.3390/s19020322. PubMed DOI PMC
Verdone R., Dardari D., Mazzini G., Conti A. Wireless Sensor and Actuator Networks: Technologies, Analysis and Design. Academic Press; Cambridge, MA, USA: 2010.
Shahraki A., Taherkordi A., Haugen Ø., Eliassen F. Clustering objectives in wireless sensor networks: A survey and research direction analysis. Comput. Netw. 2020;180:107376. doi: 10.1016/j.comnet.2020.107376. DOI
Krishnan M., Yun S., Jung Y.M. Improved clustering with firefly-optimization-based mobile data collector for wireless sensor networks. AEU-Int. J. Electron. Commun. 2018;97:242–251. doi: 10.1016/j.aeue.2018.10.014. DOI
Krishnan M., Jung Y.M., Yun S. An Improved Clustering with Particle Swarm Optimization-Based Mobile Sink for Wireless Sensor Networks; Proceedings of the 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI); Tirunelveli, India. 11–12 May 2018; Piscataway, NJ, USA: IEEE; 2018. pp. 1024–1028. DOI
Xu Y., Ding O., Qu R., Li K. Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization. Appl. Soft Comput. 2018;68:268–282. doi: 10.1016/j.asoc.2018.03.053. DOI
Kaur T., Kumar D. Particle Swarm Optimization-Based Unequal and Fault Tolerant Clustering Protocol for Wireless Sensor Networks. IEEE Sens. J. 2018;18:4614–4622. doi: 10.1109/JSEN.2018.2828099. DOI
Varsha V., Singh J., Bala M. Tabu Search Based Energy Efficient Clusteringprotocol For Wireless Sensor Networks. Glob. J. Comput. Technol. 2017;5:302–309.
Gupta G.P. Improved Cuckoo Search-based Clustering Protocol for Wireless Sensor Networks. Procedia Comput. Sci. 2018;125:234–240. doi: 10.1016/j.procs.2017.12.032. DOI
Gupta G.P., Jha S. Integrated clustering and routing protocol for wireless sensor networks using Cuckoo and Harmony Search based metaheuristic techniques. Eng. Appl. Artif. Intell. 2018;68:101–109. doi: 10.1016/j.engappai.2017.11.003. DOI
Shanthi G., Sundarambal M. FSO-PSO based multihop clustering in WSN for efficient Medical Building Management System. Clust. Comput. 2018;22:1–12. doi: 10.1007/s10586-017-1569-x. DOI
Marhoon A.F., Awaad M.H., Jebbar W.A. A New Algorithm to Improve LEACH Protocol through Best Choice for Cluster-Head. Int. J. Adv. Eng. Sci. 2014;4:1–12.
Marhoon A.F., Awaad M.H. Reduce energy consumption by improving the LEACH protocol. Int. J. Comput. Sci. Mob. Comput. 2014;3:1–9.
Coronado de Koster O.A., Domínguez-Navarro J.A. Multi-objective tabu search for the location and sizing of multiple types of FACTS and DG in electrical networks. Energies. 2020;13:2722. doi: 10.3390/en13112722. DOI
Vijayalakshmi K., Anandan P. A multi objective Tabu particle swarm optimization for effective cluster head selection in WSN. Clust. Comput. 2018;22:1–8. doi: 10.1007/s10586-017-1608-7. DOI
Bagheri A., Bagheri M., Lorestani A. Optimal reconfiguration and DG integration in distribution networks considering switching actions costs using tabu search algorithm. J. Ambient. Intell. Humaniz. Comput. 2020;12:7837–7856. doi: 10.1007/s12652-020-02511-z. DOI
Więckowski J., Kizielewicz B., Kołodziejczyk J. The Search of the Optimal Preference Values of the Characteristic Objects by Using Particle Swarm Optimization in the Uncertain Environment In International Conference on Intelligent Decision Technologies. Springer; Singapore: 2020. pp. 353–363. DOI
Umapathi N., Ramaraj N. Swarm Intelligence based dynamic source routing for improved quality of service. JATIT. 2014;61:604–608.
Liu S.C., Chen C., Zhan Z.H., Zhang J. International Conference on Evolutionary Multi-Criterion Optimization. Springer; Cham, Switzerland: 2021. Multi-objective Emergency Resource Dispatch Based on Coevolutionary Multiswarm Particle Swarm Optimization; pp. 746–758.
Orojloo H., Haghighat A.T. A Tabu search based routing algorithm for wireless sensor networks. Wirel. Netw. 2016;22:1711–1724. doi: 10.1007/s11276-015-1060-7. DOI
Skorin-Kapov J. Tabu search applied to the quadratic assignment problem. ORSA J. Comput. 1990;2:33–45. doi: 10.1287/ijoc.2.1.33. DOI
Blackwell T.M. Particle swarms and population diversity. Soft Comput. 2005;11:793–802. doi: 10.1007/s00500-004-0420-5. DOI
Harrison K.R., Ombuki-Berman B.M., Engelbrecht A.P. Evolutionary Computation (CEC) IEEE; Piscataway, NJ, USA: 2014. Dynamic multi-objective optimization using charged vector evaluated particle swarm optimization; pp. 1929–1936. DOI
Fernandez-Marquez J.L., Arcos J.L. Evolutionary Computation (CEC) IEEE; Piscataway, NJ, USA: 2010. Adapting particle swarm optimization in dynamic and noisy environments; pp. 1–8. DOI
Rastogia R., Srivastavab S., Singh T.M., Varshae M., Kumar N. A hybrid optimization approach using PSO and ant colony in wireless sensor network. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.01.874. DOI
Umapathi N., Ramaraj N. Wireless adhoc telemedicine system: Proving networking performance for multimedia data. J. Med. Imaging Health Inform. 2016;6:1944–1948. doi: 10.1166/jmihi.2016.1954. DOI
Chen Y., Yan J., Feng J., Sareh P. Particle Swarm Optimization-Based Metaheuristic Design Generation of Non-Trivial Flat-Foldable Origami Tessellations with Degree-4 Vertices. J. Mech. Des. 2021;143:011703. doi: 10.1115/1.4047437. DOI