Toxic effects of thioacetamide-induced femoral damage in New Zealand white rabbits by activating the p38/ERK signaling pathway

. 2022 Apr 30 ; 71 (2) : 285-295. [epub] 20220411

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35275703

Thioacetamide (TAA) is widely used in the production of drugs, pesticides and dyeing auxiliaries. Moreover, it is a chemical that can cause liver damage and cancer. TAA has recently been identified to cause bone damage in animal models. However, the type of bone damage that TAA causes and its potential pathogenic mechanisms remain unclear. The toxic effects of TAA on the femurs of New Zealand white rabbits and the underlying toxicity mechanism were investigated in this study. Serum samples, the heart, liver, kidney and femurs were collected from rabbits after intraperitoneal injection of TAA for 5 months (100 and 200 mg/kg). The New Zealand white rabbits treated with TAA showed significant weight loss and femoral shortening. The activities of total bilirubin, total bile acid and gamma-glutamyl transpeptidase in the serum were increased following treatment with TAA. In addition, thinned cortical bone and significantly decreased trabecular thickness of TAA-treated rabbits was observed, which was accompanied by significantly decreased mineral density of the cortical and trabecular bone. Moreover, there was a significant decrease in modulus of elasticity and maximum load on bone stress in TAA-treated rabbits. The western blotting results showed that the expression of phosphorylated (p)-p38 and p-ERK in femur tissues of rabbits were increased after TAA administration. Collectively, these results suggested that TAA may lead to femoral damage in rabbits by activating the p38/ERK signaling pathway.

Zobrazit více v PubMed

Ichimura R, Mizukami S, Takahashi M, Taniai E, Kemmochi S, Mitsumori K, Shibutani M. Disruption of Smad-dependent signaling for growth of GST-P-positive lesions from the early stage in a rat two-stage hepatocarcinogenesis model. Toxicol Appl Pharmacol. 2010;246:128–140. doi: 10.1016/j.taap.2010.04.016. PubMed DOI

Lebda MA, Sadek KM, Abouzed TK, Tohamy HG, El-Sayed YS. Melatonin mitigates Thioacetamide-induced hepatic fibrosis via antioxidant activity and modulation of Proinflammatory cytokines and Fibrogenic genes. Life Sci. 2018;192:136–143. doi: 10.1016/j.lfs.2017.11.036. PubMed DOI

Chilakapati J, Shankar K, Korrapati MC, Hill RA, Mehendale HM. Saturation toxicokinetics of thioacetamide: role in initiation of liver injury. Drug Metab Dispos. 2005;33:1877–1885. doi: 10.1124/dmd.105.005520. PubMed DOI

Hajovsky H, Hu G, Koen Y, Sarma D, Cui W, Moore DS, Staudinger JL, Hanzlik RP. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes. Chem Res Toxicol. 2012;25:1955–1963. doi: 10.1021/tx3002719. PubMed DOI PMC

Ganesan K, Sukalingam K, Xu B. Solanum trilobatum L. Ameliorate thioacetamide-induced oxidative stress and hepatic damage in albino rats. Antioxidants(Basel) 2017;6:68. doi: 10.3390/antiox6030068. PubMed DOI PMC

Lassila V, Virtanen P. Influence of experimental liver injury on rat blood and alveolar bone under stress. Acta Anat(Basel) 1984;118:116–121. doi: 10.1159/000145830. PubMed DOI

Nakano A, Kanda T, Abe H. Bone changes and mineral metabolism disorders in rats with experimental liver cirrhosis. J Gastroenterol Hepatol. 1997;11:1143–1154. doi: 10.1111/j.1440-1746.1996.tb01843.x. PubMed DOI

Mirkova ET. Activities of the rodent carcinogens thioacetamide and acetamide in the mouse bone marrow micronucleus assay. Mutat Res. 1996;352:23–30. doi: 10.1016/0027-5107(95)00169-7. PubMed DOI

Jamshidzadeh A, Heidari R, Abasvali M, Zarei M, Ommati MM, Abdoli N, Khodaei F, Yeganeh Y, Jafari F, Zarei A, Latifpour Z, Mardani E, Azarpira N, Asadi B, Najibi A. Taurine treatment preserves brain and liver mitochondrial function in a rat model of fulminant hepatic failure and hyperammonemia. Biomed Pharmacother. 2017;86:514–520. doi: 10.1016/j.biopha.2016.11.095. PubMed DOI

Kang JS. Fluorescence detection of cell death in liver of mice treated with thioacetamide. Toxicol Res. 2018;34:1–6. doi: 10.5487/TR.2018.34.1.001. doi: 10.5487/TR.2018.34.1.001. PubMed DOI PMC

Schyman P, Printz RL, Estes SK, Boyd KL, Shiota M, Wallqvist A. Identification of the toxicity pathways associated with thioacetamide-induced injuries in rat liver and kidney. Front Pharmacol. 2018;9:1272. doi: 10.3389/fphar.2018.01272. PubMed DOI PMC

Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33. doi: 10.1007/s00198-006-0172-4. PubMed DOI

Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393:364–376. doi: 10.1016/S0140-6736(18)32112-3. PubMed DOI

Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR Osteoporotic Fractures Research Group. Osteoporotic Fractures Research, BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003;18:1947–1954. doi: 10.1359/jbmr.2003.18.11.1947. PubMed DOI

Henriksen K, Neutzsky-Wulff AV, Bonewald LF, Karsdal MA. Local communication on and within bone controls bone remodeling. Bone. 2009;44:1026–1033. doi: 10.1016/j.bone.2009.03.671. PubMed DOI

Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZQ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF. Nuclear Factor of Activated T-cells (NFAT) Rescues Osteoclastogenesis in Precursors Lacking c-Fos. J Biol Chem. 2004;279:26475–26480. doi: 10.1074/jbc.M313973200. PubMed DOI

Fan F, Bashari MH, Morelli E, Tonon G, Malvestiti S, Vallet S, Jarahian M, Seckinger A, Hose D, Bakiri L, Sun C, Hu Y, Ball CR, Glimm H, Sattler M, Goldschmidt H, Wagner EF, Tassone P, Jaeger D, Podar K. The AP-1 Transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia. 2017;31:1570–1581. doi: 10.1038/leu.2016.358. PubMed DOI

Biao W, Dingjun H, Zhen Z, Wenjie G, Hu P, Yuan X, Baorong H, Lingbo K. Inhibition effects of a natural inhibitor on RANKL downstream cellular signalling cascades cross-talking. J Cell Mol Med. 2018;22:4236–4242. doi: 10.1111/jcmm.13703. PubMed DOI PMC

Rosen V. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 2009;20:475–480. doi: 10.1016/j.cytogfr.2009.10.018. PubMed DOI

Virtanen P, Lassila V. Influence of thioacetamide-provoked liver injury on female rat blood and alveolar bone under stress. Acta Anat (Basel) 1986;127:285–289. doi: 10.1159/000146299. PubMed DOI

Goswami S, Maity AC, Das NK. Advanced reagent for thionation: Rapid synthesis of primary thioamides from nitriles at room temperature. J Sulfur Chem. 2007;28:233–237. doi: 10.1080/17415990701314069. DOI

Dyachenko VD, Krivokolysko SG, Litvinov VP. Synthesis of arylmethylenecyanothioacetamides in a Michael reaction. Mendeleev Commun. 1998;8:23–24. doi: 10.1070/MC1998v008n01ABEH000816. DOI

El-Shwiniy WH, Sadeek SA. Synthesis and characterization of new 2-cyano-2-(p-tolyl-hydrazono)-thioacetamide metal complexes and a study on their antimicrobial activities. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:535–546. doi: 10.1016/j.saa.2014.08.124. PubMed DOI

Mingzhang G, Min W, Qi-Huang Z. Synthesis of carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives as new potential PET tracers for imaging of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) Bioorg Med Chem Lett. 2016;26:1371–1375. doi: 10.1016/j.bmcl.2016.01.081. PubMed DOI

Peng Z, Xiao L, Zhenyu L, Xuwang C, Ye T, Wenmin C, Xinyong L, Christophe P, Clercq ED. Structure-based bioisosterism design, synthesis and biological evaluation of novel 1,2,4-triazin-6-ylthioacetamides as potent HIV-1 NNRTIs. Bioorg Med Chem Lett. 2012;22:7155–7162. doi: 10.1016/j.bmcl.2012.09.062. PubMed DOI

Permuy M, López-Pea M, Muoz F, González-Cantalapiedra A. Rabbit as model for osteoporosis research. J Bone Miner Metab. 2019;37:573–583. doi: 10.1007/s00774-019-01007-x. PubMed DOI

Soriano E, Marco-Contelles J. Mechanistic insights on the cycloisomerization of polyunsaturated precursors catalyzed by platinum and gold complexes. Acc Chem Res. 2009;42:1026–1036. doi: 10.1021/ar800200m. PubMed DOI

Tsukamoto H. Development of new palladium(0)-catalyzed reactions based on novel oxidative addition mode. Yakugaku Zasshi. 2008;128:1259–1266. doi: 10.1248/yakushi.128.1259. PubMed DOI

Mansour HM, Salama AAA, Abdel-Salam RM, Ahmed NA, Yassen NN, Zaki HF. The anti-inflammatory and anti-fibrotic effects of tadalafil in thioacetamide-induced liver fibrosis in rats. Can J Physiol Pharmacol. 2018;96:1308–1317. doi: 10.1139/cjpp-2018-0338. PubMed DOI

Koblihová E, Mrázová I, Vernerová Z, Ryska M. Acute Liver Failure Induced by Thioacetamide: Selection of Optimal Dosage in Wistar and Lewis Rats. Physiol Res. 2014;63:491–503. doi: 10.33549/physiolres.932690. PubMed DOI

Yogalakshmi B, Viswanathan P, Anuradha CV. Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. Toxicology. 2010;268:204–212. doi: 10.1016/j.tox.2009.12.018. PubMed DOI

Bashandy SAE, Alaamer A, Moussa SAA, Omara EA. Role of zinc oxide nanoparticles in alleviating hepatic fibrosis and nephrotoxicity induced by thioacetamide in rats. Can J Physiol Pharmacol. 2018;96:337–344. doi: 10.1139/cjpp-2017-0247. PubMed DOI

Mladenović D, Krstić D, Colović M, Radosavljević T, Rasić-Marković A, Hrncić D, Macut D, Stanojlović O. Different sensitivity of various brain structures to thioacetamide-induced lipid peroxidation. Med Chem. 2012;8:52–8. doi: 10.2174/157340612799278603. PubMed DOI

Parola M, Robino G. Oxidative stress-related molecules and liver fibrosis. J Hepatol. 2001;35:297–306. doi: 10.1016/S0168-8278(01)00142-8. PubMed DOI

Lee YH, Son JY, Kim KS, Park YJ, Kim HR, Park JH, Kim KB, Lee KY, Kang KW, Kim IS, Kacew S, Lee BM, Kim HS. Estrogen deficiency potentiates thioacetamide-induced hepatic fibrosis in Sprague-Dawley rats. Int J Mol Sci. 2019;20:3709. doi: 10.3390/ijms20153709. PubMed DOI PMC

Zargar S, Wani TA, Alamro AA, Ganaie MA. Amelioration of thioacetamide-induced liver toxicity in Wistar rats by rutin. Int J Immunopathol Pharmacol. 2017;30:207–214. doi: 10.1177/0394632017714175. PubMed DOI PMC

Rock KL, Kono H. The inflammatory response to cell death. Annu Rev Pathol. 2008;3:99–126. doi: 10.1146/annurev.pathmechdis.3.121806.151456. PubMed DOI PMC

Akhtar T, Sheikh N. An overview of thioacetamide-induced hepatotoxicity. Toxin Reviews. 2013;32:43–46. doi: 10.3109/15569543.2013.805144. DOI

Seeman E. Age- and menopause-related bone loss compromise cortical and trabecular microstructure. J Gerontol A Biol Sci Med Sci. 2013;68:1218–25. doi: 10.1093/gerona/glt071. PubMed DOI

Yamada M, Chen C, Sugiyama T, Kim WK. Effect of age on bone structure parameters in laying hens. Animals(Basel) 2021;11:570. doi: 10.3390/ani11020570. PubMed DOI PMC

Jingjing L, Zhuanzhuan Z, Qi G, Yanhong D, Qipeng Z, Xueqin M. Syringin prevents bone loss in ovariectomized mice via TRAF6 mediated inhibition of NF-kappaB and stimulation of PI3K/AKT. Phytomedicine. 2018;42:43–50. doi: 10.1016/j.phymed.2018.03.020. PubMed DOI

Nussler AK, Wildemann B, Freude T, Litzka C, Soldo P, Friess H, Hammad S, Hengstle JG, Braun KF, Trak-Smayra V, Godoy P, Ehnert S. Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis. Arch Toxicol. 2014;88:997–1006. doi: 10.1007/s00204-013-1191-5. PubMed DOI

Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL, Sharff KA, Montag AG, Haydon RC, He TC. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res. 2010;25:665–677. doi: 10.1002/jor.20359. PubMed DOI

Al-Bari MAA, Hossain S, Mia U, Mamun MAA. Therapeutic and mechanistic approaches of tridax procumbens flavonoids for the treatment of osteoporosis. Curr Drug Targets. 2020;21:1687–1702. doi: 10.2174/1389450121666200719012116. PubMed DOI

Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol. 2020;8:19. doi: 10.3390/jdb8030019. PubMed DOI PMC

Song I, Kim JH, Kim KK, Jin HM, Youn BU, Kim N. Regulatory mechanism of NFATc1 in RANKL-induced osteoclast activation. Febs Lett. 2009;583:2435–40. doi: 10.1016/j.febslet.2009.06.047. PubMed DOI

Youn-Hwan H, Hyunil H, Rajeong K, Chang-Won C, Young-Ran S, Hee-Do H, Taesoo K. Anti-osteoporotic effects of polysaccharides isolated from persimmon leaves via osteoclastogenesis inhibition. Nutrients. 2018;10:901. doi: 10.3390/nu10070901. PubMed DOI PMC

Virtanen P, Lassila V. Influence of thioacetamide-provoked liver injury on female rat blood and alveolar bone under stress. Acta Anat (Basel) 1986;127:285–9. doi: 10.1159/000146299. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...