Toxic effects of thioacetamide-induced femoral damage in New Zealand white rabbits by activating the p38/ERK signaling pathway
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35275703
PubMed Central
PMC9150561
DOI
10.33549/physiolres.934803
PII: 934803
Knihovny.cz E-zdroje
- MeSH
- femur MeSH
- játra * metabolismus MeSH
- králíci MeSH
- MAP kinasový signální systém MeSH
- signální transdukce MeSH
- thioacetamid * MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- thioacetamid * MeSH
Thioacetamide (TAA) is widely used in the production of drugs, pesticides and dyeing auxiliaries. Moreover, it is a chemical that can cause liver damage and cancer. TAA has recently been identified to cause bone damage in animal models. However, the type of bone damage that TAA causes and its potential pathogenic mechanisms remain unclear. The toxic effects of TAA on the femurs of New Zealand white rabbits and the underlying toxicity mechanism were investigated in this study. Serum samples, the heart, liver, kidney and femurs were collected from rabbits after intraperitoneal injection of TAA for 5 months (100 and 200 mg/kg). The New Zealand white rabbits treated with TAA showed significant weight loss and femoral shortening. The activities of total bilirubin, total bile acid and gamma-glutamyl transpeptidase in the serum were increased following treatment with TAA. In addition, thinned cortical bone and significantly decreased trabecular thickness of TAA-treated rabbits was observed, which was accompanied by significantly decreased mineral density of the cortical and trabecular bone. Moreover, there was a significant decrease in modulus of elasticity and maximum load on bone stress in TAA-treated rabbits. The western blotting results showed that the expression of phosphorylated (p)-p38 and p-ERK in femur tissues of rabbits were increased after TAA administration. Collectively, these results suggested that TAA may lead to femoral damage in rabbits by activating the p38/ERK signaling pathway.
Zobrazit více v PubMed
Ichimura R, Mizukami S, Takahashi M, Taniai E, Kemmochi S, Mitsumori K, Shibutani M. Disruption of Smad-dependent signaling for growth of GST-P-positive lesions from the early stage in a rat two-stage hepatocarcinogenesis model. Toxicol Appl Pharmacol. 2010;246:128–140. doi: 10.1016/j.taap.2010.04.016. PubMed DOI
Lebda MA, Sadek KM, Abouzed TK, Tohamy HG, El-Sayed YS. Melatonin mitigates Thioacetamide-induced hepatic fibrosis via antioxidant activity and modulation of Proinflammatory cytokines and Fibrogenic genes. Life Sci. 2018;192:136–143. doi: 10.1016/j.lfs.2017.11.036. PubMed DOI
Chilakapati J, Shankar K, Korrapati MC, Hill RA, Mehendale HM. Saturation toxicokinetics of thioacetamide: role in initiation of liver injury. Drug Metab Dispos. 2005;33:1877–1885. doi: 10.1124/dmd.105.005520. PubMed DOI
Hajovsky H, Hu G, Koen Y, Sarma D, Cui W, Moore DS, Staudinger JL, Hanzlik RP. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes. Chem Res Toxicol. 2012;25:1955–1963. doi: 10.1021/tx3002719. PubMed DOI PMC
Ganesan K, Sukalingam K, Xu B. Solanum trilobatum L. Ameliorate thioacetamide-induced oxidative stress and hepatic damage in albino rats. Antioxidants(Basel) 2017;6:68. doi: 10.3390/antiox6030068. PubMed DOI PMC
Lassila V, Virtanen P. Influence of experimental liver injury on rat blood and alveolar bone under stress. Acta Anat(Basel) 1984;118:116–121. doi: 10.1159/000145830. PubMed DOI
Nakano A, Kanda T, Abe H. Bone changes and mineral metabolism disorders in rats with experimental liver cirrhosis. J Gastroenterol Hepatol. 1997;11:1143–1154. doi: 10.1111/j.1440-1746.1996.tb01843.x. PubMed DOI
Mirkova ET. Activities of the rodent carcinogens thioacetamide and acetamide in the mouse bone marrow micronucleus assay. Mutat Res. 1996;352:23–30. doi: 10.1016/0027-5107(95)00169-7. PubMed DOI
Jamshidzadeh A, Heidari R, Abasvali M, Zarei M, Ommati MM, Abdoli N, Khodaei F, Yeganeh Y, Jafari F, Zarei A, Latifpour Z, Mardani E, Azarpira N, Asadi B, Najibi A. Taurine treatment preserves brain and liver mitochondrial function in a rat model of fulminant hepatic failure and hyperammonemia. Biomed Pharmacother. 2017;86:514–520. doi: 10.1016/j.biopha.2016.11.095. PubMed DOI
Kang JS. Fluorescence detection of cell death in liver of mice treated with thioacetamide. Toxicol Res. 2018;34:1–6. doi: 10.5487/TR.2018.34.1.001. doi: 10.5487/TR.2018.34.1.001. PubMed DOI PMC
Schyman P, Printz RL, Estes SK, Boyd KL, Shiota M, Wallqvist A. Identification of the toxicity pathways associated with thioacetamide-induced injuries in rat liver and kidney. Front Pharmacol. 2018;9:1272. doi: 10.3389/fphar.2018.01272. PubMed DOI PMC
Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33. doi: 10.1007/s00198-006-0172-4. PubMed DOI
Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393:364–376. doi: 10.1016/S0140-6736(18)32112-3. PubMed DOI
Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR Osteoporotic Fractures Research Group. Osteoporotic Fractures Research, BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003;18:1947–1954. doi: 10.1359/jbmr.2003.18.11.1947. PubMed DOI
Henriksen K, Neutzsky-Wulff AV, Bonewald LF, Karsdal MA. Local communication on and within bone controls bone remodeling. Bone. 2009;44:1026–1033. doi: 10.1016/j.bone.2009.03.671. PubMed DOI
Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZQ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF. Nuclear Factor of Activated T-cells (NFAT) Rescues Osteoclastogenesis in Precursors Lacking c-Fos. J Biol Chem. 2004;279:26475–26480. doi: 10.1074/jbc.M313973200. PubMed DOI
Fan F, Bashari MH, Morelli E, Tonon G, Malvestiti S, Vallet S, Jarahian M, Seckinger A, Hose D, Bakiri L, Sun C, Hu Y, Ball CR, Glimm H, Sattler M, Goldschmidt H, Wagner EF, Tassone P, Jaeger D, Podar K. The AP-1 Transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia. 2017;31:1570–1581. doi: 10.1038/leu.2016.358. PubMed DOI
Biao W, Dingjun H, Zhen Z, Wenjie G, Hu P, Yuan X, Baorong H, Lingbo K. Inhibition effects of a natural inhibitor on RANKL downstream cellular signalling cascades cross-talking. J Cell Mol Med. 2018;22:4236–4242. doi: 10.1111/jcmm.13703. PubMed DOI PMC
Rosen V. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 2009;20:475–480. doi: 10.1016/j.cytogfr.2009.10.018. PubMed DOI
Virtanen P, Lassila V. Influence of thioacetamide-provoked liver injury on female rat blood and alveolar bone under stress. Acta Anat (Basel) 1986;127:285–289. doi: 10.1159/000146299. PubMed DOI
Goswami S, Maity AC, Das NK. Advanced reagent for thionation: Rapid synthesis of primary thioamides from nitriles at room temperature. J Sulfur Chem. 2007;28:233–237. doi: 10.1080/17415990701314069. DOI
Dyachenko VD, Krivokolysko SG, Litvinov VP. Synthesis of arylmethylenecyanothioacetamides in a Michael reaction. Mendeleev Commun. 1998;8:23–24. doi: 10.1070/MC1998v008n01ABEH000816. DOI
El-Shwiniy WH, Sadeek SA. Synthesis and characterization of new 2-cyano-2-(p-tolyl-hydrazono)-thioacetamide metal complexes and a study on their antimicrobial activities. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:535–546. doi: 10.1016/j.saa.2014.08.124. PubMed DOI
Mingzhang G, Min W, Qi-Huang Z. Synthesis of carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives as new potential PET tracers for imaging of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) Bioorg Med Chem Lett. 2016;26:1371–1375. doi: 10.1016/j.bmcl.2016.01.081. PubMed DOI
Peng Z, Xiao L, Zhenyu L, Xuwang C, Ye T, Wenmin C, Xinyong L, Christophe P, Clercq ED. Structure-based bioisosterism design, synthesis and biological evaluation of novel 1,2,4-triazin-6-ylthioacetamides as potent HIV-1 NNRTIs. Bioorg Med Chem Lett. 2012;22:7155–7162. doi: 10.1016/j.bmcl.2012.09.062. PubMed DOI
Permuy M, López-Pea M, Muoz F, González-Cantalapiedra A. Rabbit as model for osteoporosis research. J Bone Miner Metab. 2019;37:573–583. doi: 10.1007/s00774-019-01007-x. PubMed DOI
Soriano E, Marco-Contelles J. Mechanistic insights on the cycloisomerization of polyunsaturated precursors catalyzed by platinum and gold complexes. Acc Chem Res. 2009;42:1026–1036. doi: 10.1021/ar800200m. PubMed DOI
Tsukamoto H. Development of new palladium(0)-catalyzed reactions based on novel oxidative addition mode. Yakugaku Zasshi. 2008;128:1259–1266. doi: 10.1248/yakushi.128.1259. PubMed DOI
Mansour HM, Salama AAA, Abdel-Salam RM, Ahmed NA, Yassen NN, Zaki HF. The anti-inflammatory and anti-fibrotic effects of tadalafil in thioacetamide-induced liver fibrosis in rats. Can J Physiol Pharmacol. 2018;96:1308–1317. doi: 10.1139/cjpp-2018-0338. PubMed DOI
Koblihová E, Mrázová I, Vernerová Z, Ryska M. Acute Liver Failure Induced by Thioacetamide: Selection of Optimal Dosage in Wistar and Lewis Rats. Physiol Res. 2014;63:491–503. doi: 10.33549/physiolres.932690. PubMed DOI
Yogalakshmi B, Viswanathan P, Anuradha CV. Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. Toxicology. 2010;268:204–212. doi: 10.1016/j.tox.2009.12.018. PubMed DOI
Bashandy SAE, Alaamer A, Moussa SAA, Omara EA. Role of zinc oxide nanoparticles in alleviating hepatic fibrosis and nephrotoxicity induced by thioacetamide in rats. Can J Physiol Pharmacol. 2018;96:337–344. doi: 10.1139/cjpp-2017-0247. PubMed DOI
Mladenović D, Krstić D, Colović M, Radosavljević T, Rasić-Marković A, Hrncić D, Macut D, Stanojlović O. Different sensitivity of various brain structures to thioacetamide-induced lipid peroxidation. Med Chem. 2012;8:52–8. doi: 10.2174/157340612799278603. PubMed DOI
Parola M, Robino G. Oxidative stress-related molecules and liver fibrosis. J Hepatol. 2001;35:297–306. doi: 10.1016/S0168-8278(01)00142-8. PubMed DOI
Lee YH, Son JY, Kim KS, Park YJ, Kim HR, Park JH, Kim KB, Lee KY, Kang KW, Kim IS, Kacew S, Lee BM, Kim HS. Estrogen deficiency potentiates thioacetamide-induced hepatic fibrosis in Sprague-Dawley rats. Int J Mol Sci. 2019;20:3709. doi: 10.3390/ijms20153709. PubMed DOI PMC
Zargar S, Wani TA, Alamro AA, Ganaie MA. Amelioration of thioacetamide-induced liver toxicity in Wistar rats by rutin. Int J Immunopathol Pharmacol. 2017;30:207–214. doi: 10.1177/0394632017714175. PubMed DOI PMC
Rock KL, Kono H. The inflammatory response to cell death. Annu Rev Pathol. 2008;3:99–126. doi: 10.1146/annurev.pathmechdis.3.121806.151456. PubMed DOI PMC
Akhtar T, Sheikh N. An overview of thioacetamide-induced hepatotoxicity. Toxin Reviews. 2013;32:43–46. doi: 10.3109/15569543.2013.805144. DOI
Seeman E. Age- and menopause-related bone loss compromise cortical and trabecular microstructure. J Gerontol A Biol Sci Med Sci. 2013;68:1218–25. doi: 10.1093/gerona/glt071. PubMed DOI
Yamada M, Chen C, Sugiyama T, Kim WK. Effect of age on bone structure parameters in laying hens. Animals(Basel) 2021;11:570. doi: 10.3390/ani11020570. PubMed DOI PMC
Jingjing L, Zhuanzhuan Z, Qi G, Yanhong D, Qipeng Z, Xueqin M. Syringin prevents bone loss in ovariectomized mice via TRAF6 mediated inhibition of NF-kappaB and stimulation of PI3K/AKT. Phytomedicine. 2018;42:43–50. doi: 10.1016/j.phymed.2018.03.020. PubMed DOI
Nussler AK, Wildemann B, Freude T, Litzka C, Soldo P, Friess H, Hammad S, Hengstle JG, Braun KF, Trak-Smayra V, Godoy P, Ehnert S. Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis. Arch Toxicol. 2014;88:997–1006. doi: 10.1007/s00204-013-1191-5. PubMed DOI
Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL, Sharff KA, Montag AG, Haydon RC, He TC. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res. 2010;25:665–677. doi: 10.1002/jor.20359. PubMed DOI
Al-Bari MAA, Hossain S, Mia U, Mamun MAA. Therapeutic and mechanistic approaches of tridax procumbens flavonoids for the treatment of osteoporosis. Curr Drug Targets. 2020;21:1687–1702. doi: 10.2174/1389450121666200719012116. PubMed DOI
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol. 2020;8:19. doi: 10.3390/jdb8030019. PubMed DOI PMC
Song I, Kim JH, Kim KK, Jin HM, Youn BU, Kim N. Regulatory mechanism of NFATc1 in RANKL-induced osteoclast activation. Febs Lett. 2009;583:2435–40. doi: 10.1016/j.febslet.2009.06.047. PubMed DOI
Youn-Hwan H, Hyunil H, Rajeong K, Chang-Won C, Young-Ran S, Hee-Do H, Taesoo K. Anti-osteoporotic effects of polysaccharides isolated from persimmon leaves via osteoclastogenesis inhibition. Nutrients. 2018;10:901. doi: 10.3390/nu10070901. PubMed DOI PMC
Virtanen P, Lassila V. Influence of thioacetamide-provoked liver injury on female rat blood and alveolar bone under stress. Acta Anat (Basel) 1986;127:285–9. doi: 10.1159/000146299. PubMed DOI