Bone metabolism parameters and their relation to cytogenetics in multiple myeloma
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
00098892
MZ ČR - RVO
IGA-LF-2020-002
MZ ČR - RVO
PubMed
35306691
DOI
10.1111/ejh.13771
Knihovny.cz E-zdroje
- Klíčová slova
- bone marrow microenvironment, cytogenetics, myeloma, myeloma bone disease,
- MeSH
- biologické markery MeSH
- cytogenetické vyšetření MeSH
- kostní dřeň metabolismus MeSH
- lidé MeSH
- mnohočetný myelom * diagnóza genetika MeSH
- nádorové mikroprostředí MeSH
- vaskulární endoteliální růstový faktor A MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- vaskulární endoteliální růstový faktor A MeSH
OBJECTIVES: Our aim was to correlate serum levels of selected markers of bone metabolism and bone marrow microenvironment to cytogenetic changes in patients with multiple myeloma (MM). METHODS: We assed cytogenetic changes in 308 patients and correlated them with the following levels of bone marrow metabolism: thymidine kinase (TK), β2-microglobulin (b-2-m), Dickkopf-1 protein (DKK-1), C-terminal telopeptide collagen-I (ICTP), N-terminal propeptide of type I procollagen (PINP), receptor for interleukin 6 (rIL-6), vascular cell adhesive molecule-1 (VCAM), soluble intercellular adhesion molecule-1, osteoprotegerin (OPG), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), syndecan-1 (SYN-1) and Fas antigen. RESULT: Individuals with delRB1 had lower levels of OPG (M = 7.39 vs. 5.46 pmol/L, p = .025) and VEGF (M = 304 vs. 196 pg/ml; p = .036). t(14;16) was associated with higher β2m levels (M = 7.59 vs. 4.13 mg/L; p = .022) and lower DKK-1 levels (M = 4465 ng/L vs. 12,593). The presence of 1q21 gain was associated with higher levels of TK (M = 100.0 vs. 11.0 IU/L, p = .026) and lower levels of PINP (M = 49.3 vs. 67.4 mg/L, p = .030). CONCLUSIONS: Our analysis has shown, some cytogenetic changes, especially delRB1, t(14;16) and 1q21gain, which affect the components of the cytokine network in multiple myeloma.
Zobrazit více v PubMed
Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538-e548.
Sezer O. Myeloma bone disease: recent advances in biology, diagnosis, and treatment. Oncologist. 2009;14(3):276-283.
Kyle RA, Gertz MA, Witzig TE, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78:21-33.
Ščudla V, Budíková M, Petrová P, et al. Analýza sérových hladin vybraných biologických ukazatelů u monoklonální gamapatie nejistého významu a mnohočetného myelomu. Klin Onkol. 2010;23(3):171-181.
Terpos E, Christoulas D, Gavriatopoulou M. Biology and treatment of myeloma related bone disease. Metabolism. 2018;80:80-90.
Minarik J, Pika T, Bacovsky J, et al. Prognostic value of hepatocyte growth factor, syndecan-1, and osteopontin in multiple myeloma and monoclonal gammopathy of undetermined significance. TheScientificWorldJournal. 2012;2012:356128.
Yu L, Lv J, Jin L, et al. Analysis of the serum levels of selected biological parameters in monoclonal gammopathy of undetermined significance and different stages of multiple myeloma. Neoplasma. 2011;58(6):499-506.
Pika T, Minarik J, Schneiderka P, et al. The correlation of serum immunoglobulin free light chain levels and selected biological markers in multiple myeloma. Biomed Pap. 2008;152(1):61-64.
Roodman GD. Pathogenesis of myeloma bone disease. Leukemia. 2009;23:435.
Silbermann R, Roodman GD. Myeloma bone disease: pathophysiology and management. J Bone Oncol. 2013;2:59-69.
Scudla V, Pika T, Budikova M, et al. The importance of serum levels of selected biological parameters in the diagnosis, staging and prognosis of multiple myeloma. Neoplasma. 2010;57(2):102-110.
Minarik J, Pusciznova P, Petrova P, et al. Correlation of selected parameters of bone microenvironment to the extent of myeloma bone disease. Eur J Intern Med. 2013;24:e167.
Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol. 2015;33(26):2863.
Chng WJ, Dispenzieri A, Chim C-S, et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia. 2014;28(2):269.
Ross FM, Avet-Loiseau H, Ameye G, et al. Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders. Haematologica. 2012;97(8):1272-1277.
Wuilleme S, Robillard N, Lodé L, et al. Ploidy, as detected by fluorescence in situ hybridization, defines different subgroups in multiple myeloma. Leukemia. 2005;19(2):275-278.
Greipp PR, Miguel JS, Durie BGM, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412-3420.
Durie BG, Salmon SE. A clinical staging system for multiple myeloma correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36(3):842-854.
Nahi H, Sutlu T, Jansson M, Alici E, Gahrton G. Clinical impact of chromosomal aberrations in multiple myeloma. J Intern Med. 2011;269(2):137-147.
Billecke L, Murga Penas EM, May AM, et al. Cytogenetics of extramedullary manifestations in multiple myeloma. Br J Haematol. 2013;161(1):87-94.
Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101(11):4569-4575.
Barlogie B, Anaissie E, van Rhee F, et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol. 2007;138(2):176-185.
Nair B, van Rhee F, Shaughnessy JD, et al. Superior results of total therapy 3 (2003-33) in gene expression profiling-defined low-risk multiple myeloma confirmed in subsequent trial 2006-66 with VRD maintenance. Blood. 2010;115(21):4168-4173.
Greenberg AJ, Rajkumar SV, Therneau TM, et al. Relationship between initial clinical presentation and the molecular cytogenetic classification of myeloma. Leukemia. 2014;28(2):398.
Wu P, Walker BA, Brewer D, et al. A gene expression-based predictor for myeloma patients at high risk of developing bone disease on bisphosphonate treatment. Clin Cancer Res. 2011;17(19):6347-6355.
Podar K, Tai Y-T, Davies FE, et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 2001;98(2):428-435.
Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13(1):9-22.
Fonseca R, van Wier SA, Chng WJ, et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia. 2006;20(11):2034.
Boyd KD, Ross FM, Chiecchio L, et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia. 2012;26(2):349.
Joseph NS, Gentili S, Kaufman JL, Lonial S, Nooka AK. High-risk multiple myeloma: definition and management. Clin Lymphoma Myeloma Leuk. 2017;17:S80-S87.
Hanamura I, Stewart JP, Huang Y, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006;108(5):1724-1732.
Sawyer JR, Tian E, Heuck CJ, et al. Evidence of an epigenetic origin for high-risk 1q21 copy number aberrations in multiple myeloma. Blood. 2015;125(24):3756-3759.
Rajan A, Rajkumar S. Interpretation of cytogenetic results in multiple myeloma for clinical practice. Blood Cancer J. 2015;5(10):e365.
Sawyer JR, Tian E, Heuck CJ, et al. Jumping translocations of 1q12 in multiple myeloma: a novel mechanism for deletion of 17p in cytogenetically defined high-risk disease. Blood. 2014;123(16):2504-2512.