• This record comes from PubMed

Bone metabolism parameters and their relation to cytogenetics in multiple myeloma

. 2022 Jul ; 109 (1) : 75-82. [epub] 20220324

Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Grant support
00098892 MZ ČR - RVO
IGA-LF-2020-002 MZ ČR - RVO

OBJECTIVES: Our aim was to correlate serum levels of selected markers of bone metabolism and bone marrow microenvironment to cytogenetic changes in patients with multiple myeloma (MM). METHODS: We assed cytogenetic changes in 308 patients and correlated them with the following levels of bone marrow metabolism: thymidine kinase (TK), β2-microglobulin (b-2-m), Dickkopf-1 protein (DKK-1), C-terminal telopeptide collagen-I (ICTP), N-terminal propeptide of type I procollagen (PINP), receptor for interleukin 6 (rIL-6), vascular cell adhesive molecule-1 (VCAM), soluble intercellular adhesion molecule-1, osteoprotegerin (OPG), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), syndecan-1 (SYN-1) and Fas antigen. RESULT: Individuals with delRB1 had lower levels of OPG (M = 7.39 vs. 5.46 pmol/L, p = .025) and VEGF (M = 304 vs. 196 pg/ml; p = .036). t(14;16) was associated with higher β2m levels (M = 7.59 vs. 4.13 mg/L; p = .022) and lower DKK-1 levels (M = 4465 ng/L vs. 12,593). The presence of 1q21 gain was associated with higher levels of TK (M = 100.0 vs. 11.0 IU/L, p = .026) and lower levels of PINP (M = 49.3 vs. 67.4 mg/L, p = .030). CONCLUSIONS: Our analysis has shown, some cytogenetic changes, especially delRB1, t(14;16) and 1q21gain, which affect the components of the cytokine network in multiple myeloma.

See more in PubMed

Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538-e548.

Sezer O. Myeloma bone disease: recent advances in biology, diagnosis, and treatment. Oncologist. 2009;14(3):276-283.

Kyle RA, Gertz MA, Witzig TE, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78:21-33.

Ščudla V, Budíková M, Petrová P, et al. Analýza sérových hladin vybraných biologických ukazatelů u monoklonální gamapatie nejistého významu a mnohočetného myelomu. Klin Onkol. 2010;23(3):171-181.

Terpos E, Christoulas D, Gavriatopoulou M. Biology and treatment of myeloma related bone disease. Metabolism. 2018;80:80-90.

Minarik J, Pika T, Bacovsky J, et al. Prognostic value of hepatocyte growth factor, syndecan-1, and osteopontin in multiple myeloma and monoclonal gammopathy of undetermined significance. TheScientificWorldJournal. 2012;2012:356128.

Yu L, Lv J, Jin L, et al. Analysis of the serum levels of selected biological parameters in monoclonal gammopathy of undetermined significance and different stages of multiple myeloma. Neoplasma. 2011;58(6):499-506.

Pika T, Minarik J, Schneiderka P, et al. The correlation of serum immunoglobulin free light chain levels and selected biological markers in multiple myeloma. Biomed Pap. 2008;152(1):61-64.

Roodman GD. Pathogenesis of myeloma bone disease. Leukemia. 2009;23:435.

Silbermann R, Roodman GD. Myeloma bone disease: pathophysiology and management. J Bone Oncol. 2013;2:59-69.

Scudla V, Pika T, Budikova M, et al. The importance of serum levels of selected biological parameters in the diagnosis, staging and prognosis of multiple myeloma. Neoplasma. 2010;57(2):102-110.

Minarik J, Pusciznova P, Petrova P, et al. Correlation of selected parameters of bone microenvironment to the extent of myeloma bone disease. Eur J Intern Med. 2013;24:e167.

Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol. 2015;33(26):2863.

Chng WJ, Dispenzieri A, Chim C-S, et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia. 2014;28(2):269.

Ross FM, Avet-Loiseau H, Ameye G, et al. Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders. Haematologica. 2012;97(8):1272-1277.

Wuilleme S, Robillard N, Lodé L, et al. Ploidy, as detected by fluorescence in situ hybridization, defines different subgroups in multiple myeloma. Leukemia. 2005;19(2):275-278.

Greipp PR, Miguel JS, Durie BGM, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412-3420.

Durie BG, Salmon SE. A clinical staging system for multiple myeloma correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36(3):842-854.

Nahi H, Sutlu T, Jansson M, Alici E, Gahrton G. Clinical impact of chromosomal aberrations in multiple myeloma. J Intern Med. 2011;269(2):137-147.

Billecke L, Murga Penas EM, May AM, et al. Cytogenetics of extramedullary manifestations in multiple myeloma. Br J Haematol. 2013;161(1):87-94.

Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101(11):4569-4575.

Barlogie B, Anaissie E, van Rhee F, et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol. 2007;138(2):176-185.

Nair B, van Rhee F, Shaughnessy JD, et al. Superior results of total therapy 3 (2003-33) in gene expression profiling-defined low-risk multiple myeloma confirmed in subsequent trial 2006-66 with VRD maintenance. Blood. 2010;115(21):4168-4173.

Greenberg AJ, Rajkumar SV, Therneau TM, et al. Relationship between initial clinical presentation and the molecular cytogenetic classification of myeloma. Leukemia. 2014;28(2):398.

Wu P, Walker BA, Brewer D, et al. A gene expression-based predictor for myeloma patients at high risk of developing bone disease on bisphosphonate treatment. Clin Cancer Res. 2011;17(19):6347-6355.

Podar K, Tai Y-T, Davies FE, et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 2001;98(2):428-435.

Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13(1):9-22.

Fonseca R, van Wier SA, Chng WJ, et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia. 2006;20(11):2034.

Boyd KD, Ross FM, Chiecchio L, et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia. 2012;26(2):349.

Joseph NS, Gentili S, Kaufman JL, Lonial S, Nooka AK. High-risk multiple myeloma: definition and management. Clin Lymphoma Myeloma Leuk. 2017;17:S80-S87.

Hanamura I, Stewart JP, Huang Y, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006;108(5):1724-1732.

Sawyer JR, Tian E, Heuck CJ, et al. Evidence of an epigenetic origin for high-risk 1q21 copy number aberrations in multiple myeloma. Blood. 2015;125(24):3756-3759.

Rajan A, Rajkumar S. Interpretation of cytogenetic results in multiple myeloma for clinical practice. Blood Cancer J. 2015;5(10):e365.

Sawyer JR, Tian E, Heuck CJ, et al. Jumping translocations of 1q12 in multiple myeloma: a novel mechanism for deletion of 17p in cytogenetically defined high-risk disease. Blood. 2014;123(16):2504-2512.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...