-
Something wrong with this record ?
A single residue controls electron transfer gating in photosynthetic reaction centers
O. Shlyk, I. Samish, M. Matěnová, A. Dulebo, H. Poláková, D. Kaftan, A. Scherz,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2011
Free Medical Journals
from 2011
Nature Open Access
from 2011-12-01
PubMed Central
from 2011
Europe PubMed Central
from 2011
ProQuest Central
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Health & Medicine (ProQuest)
from 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2011
Springer Nature OA/Free Journals
from 2011-12-01
PubMed
28300167
DOI
10.1038/srep44580
Knihovny.cz E-resources
- MeSH
- Cell Respiration genetics MeSH
- Electrons MeSH
- Photosynthesis genetics MeSH
- Photosystem II Protein Complex chemistry genetics MeSH
- Kinetics MeSH
- Light MeSH
- Light-Harvesting Protein Complexes chemistry genetics MeSH
- Synechocystis chemistry genetics MeSH
- Electron Transport genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Interquinone QA- → QB electron-transfer (ET) in isolated photosystem II reaction centers (PSII-RC) is protein-gated. The temperature-dependent gating frequency "k" is described by the Eyring equation till levelling off at T ≥ 240 °K. Although central to photosynthesis, the gating mechanism has not been resolved and due to experimental limitations, could not be explored in vivo. Here we mimic the temperature dependency of "k" by enlarging VD1-208, the volume of a single residue at the crossing point of the D1 and D2 PSII-RC subunits in Synechocystis 6803 whole cells. By controlling the interactions of the D1/D2 subunits, VD1-208 (or 1/T) determines the frequency of attaining an ET-active conformation. Decelerated ET, impaired photosynthesis, D1 repair rate and overall cell physiology upon increasing VD1-208 to above 130 Å3, rationalize the >99% conservation of small residues at D1-208 and its homologous motif in non-oxygenic bacteria. The experimental means and resolved mechanism are relevant for numerous transmembrane protein-gated reactions.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19001294
- 003
- CZ-PrNML
- 005
- 20190108130307.0
- 007
- ta
- 008
- 190107s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/srep44580 $2 doi
- 035 __
- $a (PubMed)28300167
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Shlyk, Oksana $u The Weizmann Institute of Science, Department of Plant and Environmental Sciences, 76100 Rehovot, Israel.
- 245 12
- $a A single residue controls electron transfer gating in photosynthetic reaction centers / $c O. Shlyk, I. Samish, M. Matěnová, A. Dulebo, H. Poláková, D. Kaftan, A. Scherz,
- 520 9_
- $a Interquinone QA- → QB electron-transfer (ET) in isolated photosystem II reaction centers (PSII-RC) is protein-gated. The temperature-dependent gating frequency "k" is described by the Eyring equation till levelling off at T ≥ 240 °K. Although central to photosynthesis, the gating mechanism has not been resolved and due to experimental limitations, could not be explored in vivo. Here we mimic the temperature dependency of "k" by enlarging VD1-208, the volume of a single residue at the crossing point of the D1 and D2 PSII-RC subunits in Synechocystis 6803 whole cells. By controlling the interactions of the D1/D2 subunits, VD1-208 (or 1/T) determines the frequency of attaining an ET-active conformation. Decelerated ET, impaired photosynthesis, D1 repair rate and overall cell physiology upon increasing VD1-208 to above 130 Å3, rationalize the >99% conservation of small residues at D1-208 and its homologous motif in non-oxygenic bacteria. The experimental means and resolved mechanism are relevant for numerous transmembrane protein-gated reactions.
- 650 _2
- $a buněčné dýchání $x genetika $7 D019069
- 650 _2
- $a transport elektronů $x genetika $7 D004579
- 650 _2
- $a elektrony $7 D004583
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a světlosběrné proteinové komplexy $x chemie $x genetika $7 D045342
- 650 _2
- $a fotosyntéza $x genetika $7 D010788
- 650 _2
- $a fotosystém II (proteinový komplex) $x chemie $x genetika $7 D045332
- 650 _2
- $a Synechocystis $x chemie $x genetika $7 D046939
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Samish, Ilan $u The Weizmann Institute of Science, Department of Plant and Environmental Sciences, 76100 Rehovot, Israel.
- 700 1_
- $a Matěnová, Martina $u University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic.
- 700 1_
- $a Dulebo, Alexander $u University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic.
- 700 1_
- $a Poláková, Helena $u University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic.
- 700 1_
- $a Kaftan, David $u University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic. Institute of Microbiology CAS, Department of Phototrophic Microorganisms, 37981 Trebon, Czech Republic.
- 700 1_
- $a Scherz, Avigdor $u The Weizmann Institute of Science, Department of Plant and Environmental Sciences, 76100 Rehovot, Israel.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 7, č. - (2017), s. 44580
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28300167 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20190108130508 $b ABA008
- 999 __
- $a ok $b bmc $g 1365179 $s 1039417
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 7 $c - $d 44580 $e 20170316 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20190107