A High-Risk Profile for Invasive Fungal Infections Is Associated with Altered Nasal Microbiota and Niche Determinants
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, pozorovací studie, práce podpořená grantem
PubMed
35311544
PubMed Central
PMC9022527
DOI
10.1128/iai.00048-22
Knihovny.cz E-zdroje
- Klíčová slova
- hematological malignancies, invasive fungal infection, kynurenine, nasal microbiome, tolerance, tryptophan,
- MeSH
- Bacteria MeSH
- invazivní mykotické infekce * MeSH
- lidé MeSH
- mikrobiota * MeSH
- nos mikrobiologie MeSH
- prospektivní studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
It is becoming increasingly clear that the communities of microorganisms that populate the surfaces exposed to the external environment, termed microbiota, are key players in the regulation of pathogen-host cross talk affecting the onset as well as the outcome of infectious diseases. We have performed a multicenter, prospective, observational study in which nasal and oropharyngeal swabs were collected for microbiota predicting the risk of invasive fungal infections (IFIs) in patients with hematological malignancies. Here, we demonstrate that the nasal and oropharyngeal microbiota are different, although similar characteristics differentiate high-risk from low-risk samples at both sites. Indeed, similar to previously published results on the oropharyngeal microbiota, high-risk samples in the nose were characterized by low diversity, a loss of beneficial bacteria, and an expansion of potentially pathogenic taxa, in the presence of reduced levels of tryptophan (Trp). At variance with oropharyngeal samples, however, low Trp levels were associated with defective host-derived kynurenine production, suggesting reduced tolerance mechanisms at the nasal mucosal surface. This was accompanied by reduced levels of the chemokine interleukin-8 (IL-8), likely associated with a reduced recruitment of neutrophils and impaired fungal clearance. Thus, the nasal and pharyngeal microbiomes of hematological patients provide complementary information that could improve predictive tools for the risk of IFI in hematological patients.
Department of Medicine and Surgery University of Perugiagrid 9027 c Perugia Italy
Fondazione Policlinico Universitario Agostino Gemelli IRCCS Rome Italy
Hematology and Stem Cell Transplant Unit IRCCS Regina Elena National Cancer Institute Rome Italy
Hematology AUSL IRCCS Reggio Emilia Reggio Emilia Italy
Hematology S Giovanni Rotondo Hospital San Giovanni Rotondo Italy
Hematology University of Verona Verona Italy
Istituto di Ematologia Università Cattolica del Sacro Cuore Rome Italy
RECETOX Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Belkaid Y, Harrison OJ. 2017. Homeostatic immunity and the microbiota. Immunity 46:562–576. 10.1016/j.immuni.2017.04.008. PubMed DOI PMC
GBD 2016 Lower Respiratory Infections Collaborators. 2018. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis 18:1191–1210. 10.1016/S1473-3099(18)30310-4. PubMed DOI PMC
Dickson RP, Schultz MJ, van der Poll T, Schouten LR, Falkowski NR, Luth JE, Sjoding MW, Brown CA, Chanderraj R, Huffnagle GB, Bos LDJ, Biomarker Analysis in Septic ICU Patients Consortium. 2020. Lung microbiota predict clinical outcomes in critically ill patients. Am J Respir Crit Care Med 201:555–563. 10.1164/rccm.201907-1487OC. PubMed DOI PMC
Sulaiman I, Chung M, Angel L, Tsay J-CJ, Wu BG, Yeung ST, Krolikowski K, Li Y, Duerr R, Schluger R, Thannickal SA, Koide A, Rafeq S, Barnett C, Postelnicu R, Wang C, Banakis S, Perez-Perez L, Shen G, Jour G, Meyn P, Carpenito J, Liu X, Ji K, Collazo D, Labarbiera A, Amoroso N, Brosnahan S, Mukherjee V, Kaufman D, Bakker J, Lubinsky A, Pradhan D, Sterman DH, Weiden M, Heguy A, Evans L, Uyeki TM, Clemente JC, de Wit E, Schmidt AM, Shopsin B, Desvignes L, Wang C, Li H, Zhang B, Forst CV, Koide S, Stapleford KA, Khanna KM, Ghedin E, Segal LN. 2021. Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome. Nat Microbiol 6:1245–1258. 10.1038/s41564-021-00961-5. PubMed DOI PMC
Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci Transl Med 4:165rv13. 10.1126/scitranslmed.3004404. PubMed DOI
Pagano L, Busca A, Candoni A, Cattaneo C, Cesaro S, Fanci R, Nadali G, Potenza L, Russo D, Tumbarello M, Nosari A, Aversa F, SEIFEM (Sorveglianza Epidemiologica Infezioni Fungine nelle Emopatie Maligne) Group. 2017. Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations. Blood Rev 31:17–29. 10.1016/j.blre.2016.09.002. PubMed DOI
Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG. 2011. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184:957–963. 10.1164/rccm.201104-0655OC. PubMed DOI PMC
Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. 2016. The microbiome and the respiratory tract. Annu Rev Physiol 78:481–504. 10.1146/annurev-physiol-021115-105238. PubMed DOI PMC
Man WH, de Steenhuijsen Piters WAA, Bogaert D. 2017. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 15:259–270. 10.1038/nrmicro.2017.14. PubMed DOI PMC
Costantini C, Nunzi E, Spolzino A, Palmieri M, Renga G, Zelante T, Englmaier L, Coufalikova K, Spacil Z, Borghi M, Bellet MM, Acerbi E, Puccetti M, Giovagnoli S, Spaccapelo R, Talesa VN, Lomurno G, Merli F, Facchini L, Spadea A, Melillo L, Codeluppi K, Marchesi F, Marchesini G, Valente D, Dragonetti G, Nadali G, Pagano L, Aversa F, Romani L. 2021. Pharyngeal microbial signatures are predictive of the risk of fungal pneumonia in hematologic patients. Infect Immun 89:e00105-21. 10.1128/IAI.00105-21. PubMed DOI PMC
Herivaux A, Willis JR, Mercier T, Lagrou K, Goncalves SM, Goncales RA, Maertens J, Carvalho A, Gabaldon T, Cunha C. 2022. Lung microbiota predict invasive pulmonary aspergillosis and its outcome in immunocompromised patients. Thorax 77:283–291. 10.1136/thoraxjnl-2020-216179. PubMed DOI PMC
Bassis CM, Tang AL, Young VB, Pynnonen MA. 2014. The nasal cavity microbiota of healthy adults. Microbiome 2:27. 10.1186/2049-2618-2-27. PubMed DOI PMC
Brugger SD, Bomar L, Lemon KP. 2016. Commensal-pathogen interactions along the human nasal passages. PLoS Pathog 12:e1005633. 10.1371/journal.ppat.1005633. PubMed DOI PMC
Bomar L, Brugger SD, Lemon KP. 2018. Bacterial microbiota of the nasal passages across the span of human life. Curr Opin Microbiol 41:8–14. 10.1016/j.mib.2017.10.023. PubMed DOI PMC
Koskinen K, Reichert JL, Hoier S, Schachenreiter J, Duller S, Moissl-Eichinger C, Schopf V. 2018. The nasal microbiome mirrors and potentially shapes olfactory function. Sci Rep 8:1296. 10.1038/s41598-018-19438-3. PubMed DOI PMC
Rawls M, Ellis AK. 2019. The microbiome of the nose. Ann Allergy Asthma Immunol 122:17–24. 10.1016/j.anai.2018.05.009. PubMed DOI
Kumpitsch C, Koskinen K, Schopf V, Moissl-Eichinger C. 2019. The microbiome of the upper respiratory tract in health and disease. BMC Biol 17:87. 10.1186/s12915-019-0703-z. PubMed DOI PMC
Hardy BL, Merrell DS. 2021. Friend or foe: interbacterial competition in the nasal cavity. J Bacteriol 203:e00480-20. 10.1128/JB.00480-20. PubMed DOI PMC
Escapa IF, Chen T, Huang Y, Gajare P, Dewhirst FE, Lemon KP. 2018. New insights into human nostril microbiome from the Expanded Human Oral Microbiome Database (eHOMD): a resource for the microbiome of the human aerodigestive tract. mSystems 3:e00187-18. 10.1128/mSystems.00187-18. PubMed DOI PMC
De Boeck I, van den Broek MFL, Allonsius CN, Spacova I, Wittouck S, Martens K, Wuyts S, Cauwenberghs E, Jokicevic K, Vandenheuvel D, Eilers T, Lemarcq M, De Rudder C, Thys S, Timmermans JP, Vroegop AV, Verplaetse A, Van de Wiele T, Kiekens F, Hellings PW, Vanderveken OM, Lebeer S. 2020. Lactobacilli have a niche in the human nose. Cell Rep 31:107674. 10.1016/j.celrep.2020.107674. PubMed DOI
Akmatov MK, Koch N, Vital M, Ahrens W, Flesch-Janys D, Fricke J, Gatzemeier A, Greiser H, Gunther K, Illig T, Kaaks R, Krone B, Kuhn A, Linseisen J, Meisinger C, Michels K, Moebus S, Nieters A, Obi N, Schultze A, Six-Merker J, Pieper DH, Pessler F. 2017. Determination of nasal and oropharyngeal microbiomes in a multicenter population-based study—findings from pretest 1 of the German National Cohort. Sci Rep 7:1855. 10.1038/s41598-017-01212-6. PubMed DOI PMC
Lemon KP, Klepac-Ceraj V, Schiffer HK, Brodie EL, Lynch SV, Kolter R. 2010. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. mBio 1:e00129-10. 10.1128/mBio.00129-10. PubMed DOI PMC
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. 10.1186/gb-2011-12-6-r60. PubMed DOI PMC
Ramsey MM, Freire MO, Gabrilska RA, Rumbaugh KP, Lemon KP. 2016. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front Microbiol 7:1230. 10.3389/fmicb.2016.01230. PubMed DOI PMC
De Boeck I, Wittouck S, Martens K, Spacova I, Cauwenberghs E, Allonsius CN, Jorissen J, Wuyts S, Van Beeck W, Dillen J, Bron PA, Steelant B, Hellings PW, Vanderveken OM, Lebeer S. 2021. The nasal mutualist Dolosigranulum pigrum AMBR11 supports homeostasis via multiple mechanisms. iScience 24:102978. 10.1016/j.isci.2021.102978. PubMed DOI PMC
Hammond ME, Lapointe GR, Feucht PH, Hilt S, Gallegos CA, Gordon CA, Giedlin MA, Mullenbach G, Tekamp-Olson P. 1995. IL-8 induces neutrophil chemotaxis predominantly via type I IL-8 receptors. J Immunol 155:1428–1433. PubMed
Neumann A, Bjorck L, Frick IM. 2020. Finegoldia magna, an anaerobic Gram-positive bacterium of the normal human microbiota, induces inflammation by activating neutrophils. Front Microbiol 11:65. 10.3389/fmicb.2020.00065. PubMed DOI PMC
Ryan MP, Adley CC. 2014. Ralstonia spp.: emerging global opportunistic pathogens. Eur J Clin Microbiol Infect Dis 33:291–304. 10.1007/s10096-013-1975-9. PubMed DOI
Bedir Demirdag T, Ozkaya-Parlakay A, Bayrakdar F, Gulhan B, Kanik Yuksek S, Suzuk Yildiz S, Mumcuoglu I, Dinc B, Yarali N. 2022. An outbreak of Ralstonia pickettii bloodstream infection among pediatric leukemia patients. J Microbiol Immunol Infect 55:80–85. 10.1016/j.jmii.2020.12.004. PubMed DOI
Zelante T, Puccetti M, Giovagnoli S, Romani L. 2021. Regulation of host physiology and immunity by microbial indole-3-aldehyde. Curr Opin Immunol 70:27–32. 10.1016/j.coi.2020.12.004. PubMed DOI
Borghi M, Puccetti M, Pariano M, Renga G, Stincardini C, Ricci M, Giovagnoli S, Costantini C, Romani L. 2020. Tryptophan as a central hub for host/microbial symbiosis. Int J Tryptophan Res 13:1178646920919755. 10.1177/1178646920919755. PubMed DOI PMC
van der Marel AP, Samsom JN, Greuter M, van Berkel LA, O’Toole T, Kraal G, Mebius RE. 2007. Blockade of IDO inhibits nasal tolerance induction. J Immunol 179:894–900. 10.4049/jimmunol.179.2.894. PubMed DOI
Iannitti RG, Carvalho A, Cunha C, De Luca A, Giovannini G, Casagrande A, Zelante T, Vacca C, Fallarino F, Puccetti P, Massi-Benedetti C, Defilippi G, Russo M, Porcaro L, Colombo C, Ratclif L, De Benedictis FM, Romani L. 2013. Th17/Treg imbalance in murine cystic fibrosis is linked to indoleamine 2,3-dioxygenase deficiency but corrected by kynurenines. Am J Respir Crit Care Med 187:609–620. 10.1164/rccm.201207-1346OC. PubMed DOI
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. 10.1038/nmeth.f.303. PubMed DOI PMC
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodriguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, et al.. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. 10.1038/s41587-019-0209-9. PubMed DOI PMC
Reali G, Femminella M, Nunzi E, Valocchi D. 2018. Genomics as a service: a joint computing and networking perspective. Comput Netw 145:27–51. 10.1016/j.comnet.2018.08.005. DOI
Femminella M, Pergolesi M, Reali G. 2016. Performance evaluation of edge cloud computing system for big data applications, p 170–175. In Proceedings of the 5th IEEE International Conference on Cloud Networking (Cloudnet). Institute of Electrical and Electronics Engineers, Piscataway, NJ.
Felicetti L, Femminella M, Reali G, Liò P. 2014. A molecular communication system in blood vessels for tumor detection, article no 21. In Proceedings of ACM the First Annual International Conference on Nanoscale Computing and Communication. Association for Computing Machinery, Atlanta, GA.
Kruskal WH, Wallis WA. 1952. Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. 10.1080/01621459.1952.10483441. DOI
Douglas GM, Maffei VJ, Zaneveld J, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI. 2019. PICRUSt2: an improved and extensible approach for metagenome inference. bioRxiv. 10.1101/672295. DOI
Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI. 2020. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. 10.1038/s41587-020-0548-6. PubMed DOI PMC