Low Concentrated Fractionalized Nanofibers as Suitable Fillers for Optimization of Structural-Functional Parameters of Dead Space Gel Implants after Rectal Extirpation

. 2022 Mar 04 ; 8 (3) : . [epub] 20220304

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35323271

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000766 European Regional Development Fund-Project, "Engineering applications of microworld physics"
No. TL03000207 Technology Agency of the Czech Republic
SGS21/177/OHK4/3T/17 Grant Agency of the Czech Technical University in Prague
No. FV30311, Contract ID 2018FV30311 Technology Agency of the Czech Republic
TA 29 Funds of institutional research (TA 29) FVM UVS Brno
TRIO FV30311 MPO ČR

Dead space after rectal resection in colorectal surgery is an area with a high risk of complications. In this study, our goal was to develop a novel 3D implant based on composite hydrogels enriched with fractionalized nanofibers. We employed, as a novel approach in abdominal surgery, the application of agarose gels functionalized with fractionalized nanofibers on pieces dozens of microns large with a well-preserved nano-substructure. This retained excellent cell accommodation and proliferation, while nanofiber structures in separated islets allowed cells a free migration throughout the gel. We found these low-concentrated fractionalized nanofibers to be a good tool for structural and biomechanical optimization of the 3D hydrogel implants. In addition, this nano-structuralized system can serve as a convenient drug delivery system for a controlled release of encapsulated bioactive substances from the nanofiber core. Thus, we present novel 3D nanofiber-based gels for controlled release, with a possibility to modify both their biomechanical properties and drug release intended for 3D lesions healing after a rectal extirpation, hysterectomy, or pelvic exenteration.

Zobrazit více v PubMed

Killeen S., Devaney A., Mannion M., Martin S.T., Winter D.C. Omental pedicle flaps following proctectomy: A systematic review. Colorectal Dis. 2013;15:e634–e645. doi: 10.1111/codi.12394. PubMed DOI

Nilsson P.J. Omentoplasty in abdominoperineal resection: A review of the literature using a systematic approach. Dis. Colon Rectum. 2006;49:1354–1361. doi: 10.1007/s10350-006-0643-x. PubMed DOI

Blok R.D., Musters G.D., Borstlap W.A.A., Buskens C.J., Bemelman W.A., Tanis P.J., Collaborative Dutch Snapshot Research Group Snapshot Study one the value of Omentoplasty in Abdominoperineal Resection with Primary Perineal Closure for Rectal Cancer. Ann. Surg. Oncol. 2018;25:729–736. doi: 10.1245/s10434-017-6273-9. PubMed DOI PMC

Brodbeck R., Horch R.E., Arkudas A., Beier J.P. Plastic and Reconstructive Surgery in the Treatment of Oncological Perineal and Genital Defects. Front. Oncol. 2015;5:212. doi: 10.3389/fonc.2015.00212. PubMed DOI PMC

Chong T.W., Balch G.C., Kehoe S.M., Margulis V., Saint-Cyr M. Reconstruction of Large Perineal and Pelvic Wounds Using Gracilis Muscle Flaps. Ann. Surg. Oncol. 2015;22:3738–3744. doi: 10.1245/s10434-015-4435-1. PubMed DOI

Devulapalli C., Jia Wei A.T., DiBiagio J.R., Baez M.L., Baltodano P.A., Seal S.M., Sacks J.M., Cooney C.M., Rosson G.D. Primary versus Flap Closure of Perineal Defects following Oncologic Resection: A Systematic Review and Meta-Analysis. Plast. Reconstr. Surg. 2016;137:1602–1613. doi: 10.1097/PRS.0000000000002107. PubMed DOI

Johnstone M.S. Vertical Rectus Abdominis Myocutaneous versus Alternative Flaps for Perineal Repair after Abdominoperineal Excision of the Rectum in the Era of Laparoscopic Surgery. Ann. Plast. Surg. 2017;79:101–106. doi: 10.1097/SAP.0000000000001137. PubMed DOI

Cui J., Ma J.P., Xiang J., Luo Y.X., Cai S.R., Huang Y.H., Wang J.P., He Y.L. Prospective study of reconstructing pelvic floor with GORE-TEX Dual Mesh in abdominoperineal resection. Chin. Med. J. 2009;122:2138–2141. PubMed

Moreno-Sanz C., Manzanera-Diaz M., Cortina-Oliva F.J., De Pedro-Conal J. Pelvic reconstruction after abdominoperineal resection: A pilot study using an absorbable synthetic prosthesis. Tech. Coloproctol. 2011;15:455–459. doi: 10.1007/s10151-011-0763-8. PubMed DOI

Burns N.K., Jaffari M.V., Rios C.N., Mathur A.B., Butler C.H.E. Non-Cross-Linked Porcine Acellular Dermal Matrices for Abdominal Wall Reconstruction. Plast. Reconstr. Surg. 2010;125:167–176. doi: 10.1097/PRS.0b013e3181c2a6ed. PubMed DOI

Marshall M.J., Smart N.J., Daniels I.R. Biologic meshes in perineal reconstruction following extra-levator abdominoperineal excision (ELAPE) Colorectal Dis. 2012;3:12–18. doi: 10.1111/codi.12044. PubMed DOI

Alam N.N., Narant S.K., Kockerling F., Danils I.R., Smart N.J. Biologic Mesh Reconstruction of the Pelvic Floor after Extralevator Abdominoperineal Excision: A Systematic Review. Front. Surg. 2016;3:9. doi: 10.3389/fsurg.2016.00009. PubMed DOI PMC

Schilz B., Buchs N.C.H., Penna M., Scarpa C.R., Liot E., Morel P., Ris F. Biological mesh reconstruction of the pelvic floor following abdominoperineal excision for cancer: A review. World J. Clin. Oncol. 2017;8:249–254. doi: 10.5306/wjco.v8.i3.249. PubMed DOI PMC

Fitzgerald J.F., Kumar A.S. Biologic versus Synthetic Mesh Reinforcement. What are the Pros and Cons? Clin. Colon Rectal. Surg. 2014;27:140–148. PubMed PMC

Matena O. Antiadhesive agents in laparoscopic surgery. Prakt. Gyn. 2013;17:237–240.

Alegre-Sánchez A., Bernárdez C. A new non-hydrophilic agarose gel as subdermal filler for facial rejuvenation: Aesthetic results and patient satisfaction. J. Cosmet. Dermatol. 2020;19:1900–1906. doi: 10.1111/jocd.13529. PubMed DOI

Fernández-Cossío S., León-Mateos A., Sampedro F.G., Oreja M.T.C. Biocompatibility of agarose gel as a dermal filler: Histologic evaluation of subcutaneous implants. Plast Reconstr. Surg. 2007;120:1161–1169. doi: 10.1097/01.prs.0000279475.99934.71. PubMed DOI

Lu Y., Zhang S., Liu X., Ye S., Zhou X., Huang Q., Ren L. Silk/agarose scaffolds with tunable properties via SDS assisted rapid gelation. RSC Adv. 2017;7:21740–21748. doi: 10.1039/C7RA01981E. DOI

Ishizaki Y., Bandai Y., Shimomura K., Abe H., Ohtomo Y., Idezuki Y. Safe intraabdominal pressure of carbon dioxide pneumoperitoneum during laparoscopic surgery. Surgery. 1993;114:549–554. PubMed

Atkinson T.M., Giraud G.D., Togioka B.M., Jones D.B., Cigarroa J.E. Cardiovascular and Ventilatory Consequences of Laparoscopic Surgery. Circulation. 2017;135:700–710. doi: 10.1161/CIRCULATIONAHA.116.023262. PubMed DOI

Kralovic M., Vjaclovsky M., Kestlerova A., Rustichelli F., Hoch J., Amler E. Electrospun nanofibers as support for the healing of intestinal anastomoses. Physiol. Res. 2019;68((Suppl. 4)):S517–S525. doi: 10.33549/physiolres.934387. PubMed DOI

Nayak K.K., Gupta P. In vitro biocompatibility study of keratin/agar scaffold for tissue engineering. Int. J. Biol. Macromol. 2015;81:1–10. doi: 10.1016/j.ijbiomac.2015.07.025. PubMed DOI

Wester K., Andersson A.C., Ranefall P., Bengtsson E., Malmström P.U., Busch C. Cultured human fibroblasts in agarose gel as a multi-functional control for immunohistochemistry. Standardization of Ki67 (MIB1) assessment in routinely processed urinary bladder carcinoma tissue. J. Pathol. 2000;190:503–511. doi: 10.1002/(SICI)1096-9896(200003)190:4<503::AID-PATH537>3.0.CO;2-E. PubMed DOI

Varoni E., Tschon M., Palazzo B., Nitti P., Martini L., Rimondini L. Agarose gel as biomaterial or scaffold for implantation surgery: Characterizaton, histological and histomorphometric study on soft tissue response. Connect. Tissue Res. 2012;53:548–554. doi: 10.3109/03008207.2012.712583. PubMed DOI

Alexandre N., Ribeiro J., Gärtner A., Pereira T., Amorim I., Fragoso J., Lopes A., Fernandes J., Costa E., Santos-Silva A., et al. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting—In vitro and in vivo studies. J. Biomed. Mater. Res. A. 2014;102:4262–4275. doi: 10.1002/jbm.a.35098. PubMed DOI

Tanwar A., Ladage P., Kodam K.M., Ottoor D. Biodegradable and biocompatible agarose–poly (vinyl alcohol) hydrogel for the in vitro investigation of ibuprofen release. Chem. Pap. 2020;74:1965–1978. doi: 10.1007/s11696-019-01046-8. DOI

Christen M.O., Vercesi F. Polycaprolactone: How a Well-Known and Futuristic Polymer Has Become an Innovative Collagen-Stimulator in Esthetics. Clin. Cosmet. Investig. Dermatol. 2020;13:31–48. doi: 10.2147/CCID.S229054. PubMed DOI PMC

Engler A.J., Griffin M.A., Sen S., Bonnemann C.G., Sweeney H.L., Discher D.E. Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. J. Cell Biol. 2004;166:877–887. doi: 10.1083/jcb.200405004. PubMed DOI PMC

Levental I., Georges P.C., Janmey P.A. Soft biological materials and their impact on cell function. Soft Matter. 2007;3:299–306. doi: 10.1039/B610522J. PubMed DOI

McKee C.T., Last J.A., Russell P., Murphy C.J. Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng. Part B Rev. 2011;17:155–164. doi: 10.1089/ten.teb.2010.0520. PubMed DOI PMC

Ma Z., Kotaki M., Inai R., Ramakrishna S. Potential of Nanofiber Matrix as Tissue-Engineering scaffolds. Tissue Eng. 2005;11:101–109. doi: 10.1089/ten.2005.11.101. PubMed DOI

Plencner M., East B., Tonar Z., Otahal M., Prosecka E., Rampichova M., Krejci T., Litvinec A., Buzgo M., Mickova A., et al. Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. Int. J. Nanomed. 2014;9:3263–3277. doi: 10.2147/IJN.S63095. PubMed DOI PMC

Bölgen N., Korkusuz V.P., Menceloglu Y.Z., Piskin E. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J. Biomed. Mater. Res. B Appl. Biomater. 2007;81:530–543. doi: 10.1002/jbm.b.30694. PubMed DOI

Staffa A., Vocetkova K., Sovkova V., Rampichova M., Filova E., Amler E. Polycaprolactone nanofiber mesh with adhered liposomes as a simple delivery system for bioactive growth factors. Transl. Med. Rep. 2017;1:58–63. doi: 10.4081/tmr.6716. DOI

Rampichova M., Buzgo M., Lukasova V., Mickova A., Vocetkova K., Sovkova V., Rustichelli F., Amler E. Functionalization of 3D fibrous sca_olds prepared using centrifugal spinning with liposomes as a simple drug delivery system. Acta Polytechnol. CTU Proc. 2017;8:24–26. doi: 10.14311/APP.2017.8.0024. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...