Low Concentrated Fractionalized Nanofibers as Suitable Fillers for Optimization of Structural-Functional Parameters of Dead Space Gel Implants after Rectal Extirpation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000766
European Regional Development Fund-Project, "Engineering applications of microworld physics"
No. TL03000207
Technology Agency of the Czech Republic
SGS21/177/OHK4/3T/17
Grant Agency of the Czech Technical University in Prague
No. FV30311, Contract ID 2018FV30311
Technology Agency of the Czech Republic
TA 29
Funds of institutional research (TA 29) FVM UVS Brno
TRIO FV30311
MPO ČR
PubMed
35323271
PubMed Central
PMC8949947
DOI
10.3390/gels8030158
PII: gels8030158
Knihovny.cz E-zdroje
- Klíčová slova
- dead space, drug delivery system, fractionalized nanofibers, gel rigidification,
- Publikační typ
- časopisecké články MeSH
Dead space after rectal resection in colorectal surgery is an area with a high risk of complications. In this study, our goal was to develop a novel 3D implant based on composite hydrogels enriched with fractionalized nanofibers. We employed, as a novel approach in abdominal surgery, the application of agarose gels functionalized with fractionalized nanofibers on pieces dozens of microns large with a well-preserved nano-substructure. This retained excellent cell accommodation and proliferation, while nanofiber structures in separated islets allowed cells a free migration throughout the gel. We found these low-concentrated fractionalized nanofibers to be a good tool for structural and biomechanical optimization of the 3D hydrogel implants. In addition, this nano-structuralized system can serve as a convenient drug delivery system for a controlled release of encapsulated bioactive substances from the nanofiber core. Thus, we present novel 3D nanofiber-based gels for controlled release, with a possibility to modify both their biomechanical properties and drug release intended for 3D lesions healing after a rectal extirpation, hysterectomy, or pelvic exenteration.
2nd Faculty of Medicine Charles University 15000 Prague Czech Republic
Ambis College Lindnerova 575 1 18000 Prague Czech Republic
Department of Biomedical Sciences University of Sassari 07100 Sassari Italy
Faculty of Biomedical Engineering Czech Technical University Prague 27201 Prague Czech Republic
Faculty of Physical Education and Sport Charles University 16252 Prague Czech Republic
Zobrazit více v PubMed
Killeen S., Devaney A., Mannion M., Martin S.T., Winter D.C. Omental pedicle flaps following proctectomy: A systematic review. Colorectal Dis. 2013;15:e634–e645. doi: 10.1111/codi.12394. PubMed DOI
Nilsson P.J. Omentoplasty in abdominoperineal resection: A review of the literature using a systematic approach. Dis. Colon Rectum. 2006;49:1354–1361. doi: 10.1007/s10350-006-0643-x. PubMed DOI
Blok R.D., Musters G.D., Borstlap W.A.A., Buskens C.J., Bemelman W.A., Tanis P.J., Collaborative Dutch Snapshot Research Group Snapshot Study one the value of Omentoplasty in Abdominoperineal Resection with Primary Perineal Closure for Rectal Cancer. Ann. Surg. Oncol. 2018;25:729–736. doi: 10.1245/s10434-017-6273-9. PubMed DOI PMC
Brodbeck R., Horch R.E., Arkudas A., Beier J.P. Plastic and Reconstructive Surgery in the Treatment of Oncological Perineal and Genital Defects. Front. Oncol. 2015;5:212. doi: 10.3389/fonc.2015.00212. PubMed DOI PMC
Chong T.W., Balch G.C., Kehoe S.M., Margulis V., Saint-Cyr M. Reconstruction of Large Perineal and Pelvic Wounds Using Gracilis Muscle Flaps. Ann. Surg. Oncol. 2015;22:3738–3744. doi: 10.1245/s10434-015-4435-1. PubMed DOI
Devulapalli C., Jia Wei A.T., DiBiagio J.R., Baez M.L., Baltodano P.A., Seal S.M., Sacks J.M., Cooney C.M., Rosson G.D. Primary versus Flap Closure of Perineal Defects following Oncologic Resection: A Systematic Review and Meta-Analysis. Plast. Reconstr. Surg. 2016;137:1602–1613. doi: 10.1097/PRS.0000000000002107. PubMed DOI
Johnstone M.S. Vertical Rectus Abdominis Myocutaneous versus Alternative Flaps for Perineal Repair after Abdominoperineal Excision of the Rectum in the Era of Laparoscopic Surgery. Ann. Plast. Surg. 2017;79:101–106. doi: 10.1097/SAP.0000000000001137. PubMed DOI
Cui J., Ma J.P., Xiang J., Luo Y.X., Cai S.R., Huang Y.H., Wang J.P., He Y.L. Prospective study of reconstructing pelvic floor with GORE-TEX Dual Mesh in abdominoperineal resection. Chin. Med. J. 2009;122:2138–2141. PubMed
Moreno-Sanz C., Manzanera-Diaz M., Cortina-Oliva F.J., De Pedro-Conal J. Pelvic reconstruction after abdominoperineal resection: A pilot study using an absorbable synthetic prosthesis. Tech. Coloproctol. 2011;15:455–459. doi: 10.1007/s10151-011-0763-8. PubMed DOI
Burns N.K., Jaffari M.V., Rios C.N., Mathur A.B., Butler C.H.E. Non-Cross-Linked Porcine Acellular Dermal Matrices for Abdominal Wall Reconstruction. Plast. Reconstr. Surg. 2010;125:167–176. doi: 10.1097/PRS.0b013e3181c2a6ed. PubMed DOI
Marshall M.J., Smart N.J., Daniels I.R. Biologic meshes in perineal reconstruction following extra-levator abdominoperineal excision (ELAPE) Colorectal Dis. 2012;3:12–18. doi: 10.1111/codi.12044. PubMed DOI
Alam N.N., Narant S.K., Kockerling F., Danils I.R., Smart N.J. Biologic Mesh Reconstruction of the Pelvic Floor after Extralevator Abdominoperineal Excision: A Systematic Review. Front. Surg. 2016;3:9. doi: 10.3389/fsurg.2016.00009. PubMed DOI PMC
Schilz B., Buchs N.C.H., Penna M., Scarpa C.R., Liot E., Morel P., Ris F. Biological mesh reconstruction of the pelvic floor following abdominoperineal excision for cancer: A review. World J. Clin. Oncol. 2017;8:249–254. doi: 10.5306/wjco.v8.i3.249. PubMed DOI PMC
Fitzgerald J.F., Kumar A.S. Biologic versus Synthetic Mesh Reinforcement. What are the Pros and Cons? Clin. Colon Rectal. Surg. 2014;27:140–148. PubMed PMC
Matena O. Antiadhesive agents in laparoscopic surgery. Prakt. Gyn. 2013;17:237–240.
Alegre-Sánchez A., Bernárdez C. A new non-hydrophilic agarose gel as subdermal filler for facial rejuvenation: Aesthetic results and patient satisfaction. J. Cosmet. Dermatol. 2020;19:1900–1906. doi: 10.1111/jocd.13529. PubMed DOI
Fernández-Cossío S., León-Mateos A., Sampedro F.G., Oreja M.T.C. Biocompatibility of agarose gel as a dermal filler: Histologic evaluation of subcutaneous implants. Plast Reconstr. Surg. 2007;120:1161–1169. doi: 10.1097/01.prs.0000279475.99934.71. PubMed DOI
Lu Y., Zhang S., Liu X., Ye S., Zhou X., Huang Q., Ren L. Silk/agarose scaffolds with tunable properties via SDS assisted rapid gelation. RSC Adv. 2017;7:21740–21748. doi: 10.1039/C7RA01981E. DOI
Ishizaki Y., Bandai Y., Shimomura K., Abe H., Ohtomo Y., Idezuki Y. Safe intraabdominal pressure of carbon dioxide pneumoperitoneum during laparoscopic surgery. Surgery. 1993;114:549–554. PubMed
Atkinson T.M., Giraud G.D., Togioka B.M., Jones D.B., Cigarroa J.E. Cardiovascular and Ventilatory Consequences of Laparoscopic Surgery. Circulation. 2017;135:700–710. doi: 10.1161/CIRCULATIONAHA.116.023262. PubMed DOI
Kralovic M., Vjaclovsky M., Kestlerova A., Rustichelli F., Hoch J., Amler E. Electrospun nanofibers as support for the healing of intestinal anastomoses. Physiol. Res. 2019;68((Suppl. 4)):S517–S525. doi: 10.33549/physiolres.934387. PubMed DOI
Nayak K.K., Gupta P. In vitro biocompatibility study of keratin/agar scaffold for tissue engineering. Int. J. Biol. Macromol. 2015;81:1–10. doi: 10.1016/j.ijbiomac.2015.07.025. PubMed DOI
Wester K., Andersson A.C., Ranefall P., Bengtsson E., Malmström P.U., Busch C. Cultured human fibroblasts in agarose gel as a multi-functional control for immunohistochemistry. Standardization of Ki67 (MIB1) assessment in routinely processed urinary bladder carcinoma tissue. J. Pathol. 2000;190:503–511. doi: 10.1002/(SICI)1096-9896(200003)190:4<503::AID-PATH537>3.0.CO;2-E. PubMed DOI
Varoni E., Tschon M., Palazzo B., Nitti P., Martini L., Rimondini L. Agarose gel as biomaterial or scaffold for implantation surgery: Characterizaton, histological and histomorphometric study on soft tissue response. Connect. Tissue Res. 2012;53:548–554. doi: 10.3109/03008207.2012.712583. PubMed DOI
Alexandre N., Ribeiro J., Gärtner A., Pereira T., Amorim I., Fragoso J., Lopes A., Fernandes J., Costa E., Santos-Silva A., et al. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting—In vitro and in vivo studies. J. Biomed. Mater. Res. A. 2014;102:4262–4275. doi: 10.1002/jbm.a.35098. PubMed DOI
Tanwar A., Ladage P., Kodam K.M., Ottoor D. Biodegradable and biocompatible agarose–poly (vinyl alcohol) hydrogel for the in vitro investigation of ibuprofen release. Chem. Pap. 2020;74:1965–1978. doi: 10.1007/s11696-019-01046-8. DOI
Christen M.O., Vercesi F. Polycaprolactone: How a Well-Known and Futuristic Polymer Has Become an Innovative Collagen-Stimulator in Esthetics. Clin. Cosmet. Investig. Dermatol. 2020;13:31–48. doi: 10.2147/CCID.S229054. PubMed DOI PMC
Engler A.J., Griffin M.A., Sen S., Bonnemann C.G., Sweeney H.L., Discher D.E. Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. J. Cell Biol. 2004;166:877–887. doi: 10.1083/jcb.200405004. PubMed DOI PMC
Levental I., Georges P.C., Janmey P.A. Soft biological materials and their impact on cell function. Soft Matter. 2007;3:299–306. doi: 10.1039/B610522J. PubMed DOI
McKee C.T., Last J.A., Russell P., Murphy C.J. Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng. Part B Rev. 2011;17:155–164. doi: 10.1089/ten.teb.2010.0520. PubMed DOI PMC
Ma Z., Kotaki M., Inai R., Ramakrishna S. Potential of Nanofiber Matrix as Tissue-Engineering scaffolds. Tissue Eng. 2005;11:101–109. doi: 10.1089/ten.2005.11.101. PubMed DOI
Plencner M., East B., Tonar Z., Otahal M., Prosecka E., Rampichova M., Krejci T., Litvinec A., Buzgo M., Mickova A., et al. Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. Int. J. Nanomed. 2014;9:3263–3277. doi: 10.2147/IJN.S63095. PubMed DOI PMC
Bölgen N., Korkusuz V.P., Menceloglu Y.Z., Piskin E. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J. Biomed. Mater. Res. B Appl. Biomater. 2007;81:530–543. doi: 10.1002/jbm.b.30694. PubMed DOI
Staffa A., Vocetkova K., Sovkova V., Rampichova M., Filova E., Amler E. Polycaprolactone nanofiber mesh with adhered liposomes as a simple delivery system for bioactive growth factors. Transl. Med. Rep. 2017;1:58–63. doi: 10.4081/tmr.6716. DOI
Rampichova M., Buzgo M., Lukasova V., Mickova A., Vocetkova K., Sovkova V., Rustichelli F., Amler E. Functionalization of 3D fibrous sca_olds prepared using centrifugal spinning with liposomes as a simple drug delivery system. Acta Polytechnol. CTU Proc. 2017;8:24–26. doi: 10.14311/APP.2017.8.0024. DOI