Microsaccades, Drifts, Hopf Bundle and Neurogeometry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35324631
PubMed Central
PMC8953095
DOI
10.3390/jimaging8030076
PII: jimaging8030076
Knihovny.cz E-zdroje
- Klíčová slova
- Donders’ and Listing’s law, Hopf bundle, drift, fixation eyes movements, microsaccades, neurogeometry, quaternions, remapping, shift of receptive fields,
- Publikační typ
- časopisecké články MeSH
The first part of the paper contains a short review of the image processing in early vision is static, when the eyes and the stimulus are stable, and in dynamics, when the eyes participate in fixation eye movements. In the second part, we give an interpretation of Donders' and Listing's law in terms of the Hopf fibration of the 3-sphere over the 2-sphere. In particular, it is shown that the configuration space of the eye ball (when the head is fixed) is the 2-dimensional hemisphere SL+, called Listing hemisphere, and saccades are described as geodesic segments of SL+ with respect to the standard round metric. We study fixation eye movements (drift and microsaccades) in terms of this model and discuss the role of fixation eye movements in vision. A model of fixation eye movements is proposed that gives an explanation of presaccadic shift of receptive fields.
Faculty of Science University of Hradec Králové Rokitanského 62 500 03 Hradec Králové Czech Republic
Institute for Information Transmission Problems B Karetnuj per 19 127051 Moscow Russia
Zobrazit více v PubMed
Bressloff P.C., Cowan J.D. A spherical model for orientation as spatial-frequency tuning in a cortical hypercolumn. Philos. Trans. R. Soc. Lond. B. 2003;357:1643–1667. doi: 10.1098/rstb.2002.1109. PubMed DOI PMC
Bressloff P.C., Cowan J.D. The functional geometry of local and horizontal connections in a model of V1. J. Physiol. Paris. 2003;97:221–236. doi: 10.1016/j.jphysparis.2003.09.017. PubMed DOI
Bressloff P.C., Cowan J.D. The visual cortex as a crystal. Phys. D. 2002;173:226–258. doi: 10.1016/S0167-2789(02)00677-2. DOI
Citti G., Sarti A., editors. Neuromathematics of Vision. Springer; Berlin/Heidelberg, Germany: 2014. Lecture Notes in Morphogenesis.
Petitot J. The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. Paris. 2003;97:265–309. doi: 10.1016/j.jphysparis.2003.10.010. PubMed DOI
Petitot J. Elements of Neurogeometry. Springer; Berlin/Heidelberg, Germany: 2017.
Sarti A., Citti G., Petitot J. The symplectic structure of the primary visual cortex. Biol. Cybern. 2008;98:33–48. doi: 10.1007/s00422-007-0194-9. PubMed DOI
Westheimer D. The third dimension in the primary visual cortex. J. Phys. 2009;587:2807–2816. doi: 10.1113/jphysiol.2009.170175. PubMed DOI PMC
Alekseevsky D. Conformal model of hypercolumns in V1 cortex and the Mobius group. Application to the visual stability problem; Proceedings of the International Conference on Geometric Science of Information; Paris, France. 21–23 July 2021; pp. 65–72.
Yarbys A.L. Eye Movements and Vision. Plenum Press; New York, NY, USA: 1967.
Rucci M., Ahissar E., Burr D. Temporal Coding of Visual Space. Trends Cogn. Sci. 2018;22:883895. doi: 10.1016/j.tics.2018.07.009. PubMed DOI PMC
Ahissar E., Arieli A. Figuring Space by Time Review. Neuron. 2001;32:185–201. doi: 10.1016/S0896-6273(01)00466-4. PubMed DOI
Ahissar E., Arieli A. Seeing via miniature eye movements: A dynamic hypothesis for vision. Front. Comput. Neurosci. 2012;6:89. doi: 10.3389/fncom.2012.00089. PubMed DOI PMC
Carandini M. What simple and complex cells compute? J Physiol. 2006;577:463–466. doi: 10.1113/jphysiol.2006.118976. PubMed DOI PMC
Carandini M., Demb J.B., Mante V., Tolhurst D.J., Dan Y., Olshausen B.A., Gallant J.L., Rust N.C. Do We Know What the Early Visual System Does? J. Neurosci. 2005;25:10577–10597. doi: 10.1523/JNEUROSCI.3726-05.2005. PubMed DOI PMC
Melcher D., Colby C.L. Trans-saccadic perception. Trends Cogn Sci. 2008;12:466–473. doi: 10.1016/j.tics.2008.09.003. PubMed DOI
Wolfe B.A., Whitney D. Saccadic remapping of object-selective information. Atten. Percept. Psychophys. 2015;77:2260–2269. doi: 10.3758/s13414-015-0944-z. PubMed DOI PMC
Ross J., Morrone M.C., Burr D.C. Compression of visual space before saccades. Nature. 1998;386:598–601. doi: 10.1038/386598a0. PubMed DOI
Burr D.C., Ross J., Binda P., Morrone M.C. Saccades compress space, time and number. Trends Cogn. Sci. 2010;14:528–533. doi: 10.1016/j.tics.2010.09.005. PubMed DOI
Hauperich A.-K., Young L.K., Smithson H.E. What makes a microsaccade? A review of 70 years of research prompts a new detection method. J. Eye Mov. Res. 2020;12:1–22. doi: 10.16910/jemr.12.6.13. PubMed DOI PMC
Aytekin M., Victor J.D., Rucci M. The Visual Input to the Retina during Natural Head-Free Fixation. J. Neurosci. 2014;17:1201–1215. doi: 10.1523/JNEUROSCI.0229-14.2014. PubMed DOI PMC
Boi M., Poletti M., Victor J.D., Rucci M. Consequences of the oculomotor cycle for the dynamics of perception. Curr. Biol. 2017;27:110. doi: 10.1016/j.cub.2017.03.034. PubMed DOI PMC
Poletti M., Rucci M. A compact field guide to the study of microsaccades: Challenges and functions. Vis. Res. 2016;118:83–97. doi: 10.1016/j.visres.2015.01.018. PubMed DOI PMC
Rucci M., Poletti M. Control and Functions of Fixational Eye Movements. Annu. Rev. Vis. Sci. 2015;1:499518. doi: 10.1146/annurev-vision-082114-035742. PubMed DOI PMC
Rucci M., Victor J.D. The Unsteady Eye: An Information Processing Stage, not a Bug. Trends Neurosci. 2015;38:19520. doi: 10.1016/j.tins.2015.01.005. PubMed DOI PMC
Wurtz R.H. Neuronal mechanisms of visual stability. Vis. Res. 2008;48:2070–2089. doi: 10.1016/j.visres.2008.03.021. PubMed DOI PMC
Cavanaugh J., Berman R.A., Joiner W.M., Wurtz R.H. Saccadic Corollary Discharge Underlies Stable Visual Perception. J. Neurosci. 2016;36:31–42. doi: 10.1523/JNEUROSCI.2054-15.2016. PubMed DOI PMC
Wurtz R.H., Joiner W.M., Berman R.A. Neuronal mechanisms for visual stability: Progress and problems. Philos. Trans. R. Soc. B. 2011;366:492–503. doi: 10.1098/rstb.2010.0186. PubMed DOI PMC
Vasudevan R., Phatak A.V., Smith J.D. A stochastic model for eye movements during fixation on a stationary target. Kybernetik. 1972;11:24–31. doi: 10.1007/BF00267762. PubMed DOI
Lakshminarayanan V. Stochastic Eye Movements While Fixating on a Stationary Target. In: Vijayakumar A., Sreenivasan M., editors. Stochastic Processes and Their Applications. Narosa Publishing House Private Limited; New Delhi, India: 1999. pp. 39–49.
Boccignone G. Advanced statistical methods for eyemovement analysis and modelling: A gentle introduction. arXiv. 20171506.07194v4
Engbert R., Mergenthaler K., Sinn P., Pikovsky A. An integrated model of fixation eye movements and microsaccades. Proc. Nat. Acad. Sci. USA. 2011;108:765–770. doi: 10.1073/pnas.1102730108. PubMed DOI PMC
Herrmann C.J.J., Metzler R., Engbert R. A self-avoiding walk with neural delays as a model of fixational eye movements. Sci. Rep. 2017;7:12958. doi: 10.1038/s41598-017-13489-8. PubMed DOI PMC
Coifman R.R., Lafon S. Diffusion maps. Appl. Comput. Harmon. Anal. 2006;21:5–30. doi: 10.1016/j.acha.2006.04.006. DOI
Lafon S., Lee A.B. Diffusion Maps and Coarse-Graining: A Unied Framework for Dimensionality Reduction, Graph Partitioning and Data Set Parameterization. IEEE Trans. Pattern Anal. Mach. Intell. 2006;28:1393–1403. doi: 10.1109/TPAMI.2006.184. PubMed DOI
Kaplan E., Benardete E. The dynamics of primate retinal ganglion cells. Prog. Brain Res. 2001;134:17–34. PubMed
Hubel D.H. Eye, Brain and Vision. JAMA. 1988;260:3677.
Schwartz E. Topographic Mapping in Primate Visual Cortex: History, Anatomy and Computation. Courant Institute of Mathematical Sciences; New York, NY, USA: 1993. Technical Report 593.
Schwartz E. Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biol. Cybern. 1977;25:181–194. doi: 10.1007/BF01885636. PubMed DOI
Kowler E. Eye movements: The past 25 years. Vis. Res. 2011;51:1457–1483. doi: 10.1016/j.visres.2010.12.014. PubMed DOI PMC
Rolf M. Microsaccades: Small steps on a long way. Vis. Res. 2009;49:2415–2441. doi: 10.1016/j.visres.2009.08.010. PubMed DOI
Sinn P., Engbert R. Small saccades versus microsaccades: Experimental distinction and model-based unification. Vis. Res. 2016;118:132–143. doi: 10.1016/j.visres.2015.05.012. PubMed DOI
Bowers N.R., Boehm A.E., Roorda A. The effects of fixational tremor on the retinal image. J. Vis. 2019;19:8. doi: 10.1167/19.11.8. PubMed DOI PMC
Martinez-Conde S., Macknik S.L., Hubel D.H. The role of fixation eye movements in visual perception. Nat. Rev. 2004;5:224–240. doi: 10.1038/nrn1348. PubMed DOI
Duhamel J.-R., Colby C.L., Goldberg M.E. The Updating of the Representation of Visual Space in Parietal Cortex by Intended Eye Movements. Science. 1992;255:90–92. doi: 10.1126/science.1553535. PubMed DOI
Zirnsak M., Moore T. Saccades and shifting receptive fields: Anticipating consequences or selecting targets? Trends Cogn. Sci. 2014;18:621–628. doi: 10.1016/j.tics.2014.10.002. PubMed DOI PMC
Molchnov S.A. Diffusion processes and Riemannian geometry. Uspekhi Mat. Nauk. 1975;30:3–59. doi: 10.1070/RM1975v030n01ABEH001400. DOI