Poxviruses Bearing DNA Polymerase Mutations Show Complex Patterns of Cross-Resistance

. 2022 Mar 01 ; 10 (3) : . [epub] 20220301

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35327382

Grantová podpora
G0680.08 Research Foundation - Flanders
PF/10/018 KU Leuven

Odkazy

PubMed 35327382
PubMed Central PMC8945813
DOI 10.3390/biomedicines10030580
PII: biomedicines10030580
Knihovny.cz E-zdroje

Despite the eradication of smallpox four decades ago, poxviruses continue to be a threat to humans and animals. The arsenal of anti-poxvirus agents is very limited and understanding mechanisms of resistance to agents targeting viral DNA polymerases is fundamental for the development of antiviral therapies. We describe here the phenotypic and genotypic characterization of poxvirus DNA polymerase mutants isolated under selective pressure with different acyclic nucleoside phosphonates, including HPMPC (cidofovir), cHPMPC, HPMPA, cHPMPA, HPMPDAP, HPMPO-DAPy, and PMEO-DAPy, and the pyrophosphate analogue phosphonoacetic acid. Vaccinia virus (VACV) and cowpox virus drug-resistant viral clones emerging under drug pressure were characterized phenotypically (drug-susceptibility profile) and genotypically (DNA polymerase sequencing). Different amino acid changes in the polymerase domain and in the 3'-5' exonuclease domain were linked to drug resistance. Changes in the 3'-5' domain emerged earlier than in the polymerase domain when viruses acquired a combination of mutations. Our study highlights the importance of poxvirus DNA polymerase residues 314, 613, 684, 688, and 851, previously linked to drug resistance, and identified several novel mutations in the 3'-5' exonuclease domain (M313I, F354L, D480Y) and in the DNA polymerase domain (A632T, T831I, E856K, L924F) associated with different drug-susceptibility profiles. Furthermore, a combination of mutations resulted in complex patterns of cross-resistance. Modeling of the VACV DNA polymerase bearing the newly described mutations was performed to understand the effects of these mutations on the structure of the viral enzyme. We demonstrated the emergence of drug-resistant DNA polymerase mutations in complex patterns to be considered in case such mutations should eventually arise in the clinic.

Zobrazit více v PubMed

Foster S.A., Parker S., Lanier R. The Role of Brincidofovir in Preparation for a Potential Smallpox Outbreak. Viruses. 2017;9:320. doi: 10.3390/v9110320. PubMed DOI PMC

Jacobs B.L., Langland J.O., Kibler K.V., Denzler K.L., White S.D., Holechek S.A., Wong S., Huynh T., Baskin C.R. Vaccinia virus vaccines: Past, present and future. Antivir. Res. 2009;84:1–13. doi: 10.1016/j.antiviral.2009.06.006. PubMed DOI PMC

Fenner F. Smallpox: Emergence, global spread, and eradication. Hist. Philos. Life Sci. 1993;15:397–420. PubMed

Breman J.G., Arita I. The Confirmation and Maintenance of Smallpox Eradication. N. Engl. J. Med. 1980;303:1263–1273. doi: 10.1056/nejm198011273032204. PubMed DOI

Melamed S., Israely T., Paran N. Challenges and Achievements in Prevention and Treatment of Smallpox. Vaccines. 2018;6:8. doi: 10.3390/vaccines6010008. PubMed DOI PMC

Grosenbach D.W., Honeychurch K., Rose E.A., Chinsangaram J., Frimm A., Maiti B., Lovejoy C., Meara I., Long P., Hruby D.E. Oral Tecovirimat for the Treatment of Smallpox. N. Engl. J. Med. 2018;379:44–53. doi: 10.1056/nejmoa1705688. PubMed DOI PMC

Yang G., Pevear D.C., Davies M.H., Collett M.S., Bailey T., Rippen S., Barone L., Burns C., Rhodes G., Tohan S., et al. An Orally Bioavailable Antipoxvirus Compound (ST-246) Inhibits Extracellular Virus Formation and Protects Mice from Lethal Orthopoxvirus Challenge. J. Virol. 2005;79:13139–13149. doi: 10.1128/jvi.79.20.13139-13149.2005. PubMed DOI PMC

Duraffour S., Lorenzo M.M., Zöller G., Topalis D., Grosenbach D., Hruby D.E., Andrei G., Blasco R., Meyer H., Snoeck R. ST-246 is a key antiviral to inhibit the viral F13L phospholipase, one of the essential proteins for orthopoxvirus wrapping. J. Antimicrob. Chemother. 2015;70:1367–1380. doi: 10.1093/jac/dku545. PubMed DOI PMC

Chan-Tack K., Harrington P., Bensman T., Choi S.-Y., Donaldson E., O’Rear J., McMillan D., Myers L., Seaton M., Ghantous H., et al. Benefit-risk assessment for brincidofovir for the treatment of smallpox: U.S. Food and Drug Administration’s Evaluation. Antivir. Res. 2021;195:105182. doi: 10.1016/j.antiviral.2021.105182. PubMed DOI

Alvarez-Cardona J.J., Whited L.K., Chemaly R.F. Brincidofovir: Understanding its unique profile and potential role against ade-novirus and other viral infections. Future Microbiol. 2020;15:389–400. PubMed

Delaune D., Iseni F. Drug Development against Smallpox: Present and Future. Antimicrob. Agents Chemother. 2020;64 doi: 10.1128/aac.01683-19. PubMed DOI PMC

Kabuga A.I., El Zowalaty M.E. A review of the monkeypox virus and a recent outbreak of skin rash disease in Nigeria. J. Med. Virol. 2019;91:533–540. PubMed

Guagliardo S.A.J., Monroe B., Moundjoa C., Athanase A., Okpu G., Burgado J., Townsend M.B., Satheshkumar P.S., Epperson S., Doty J.B., et al. Asymptomatic Orthopoxvirus Circulation in Humans in the Wake of a Monkeypox Outbreak among Chimpanzees in Cameroon. Am. J. Trop. Med. Hyg. 2020;102:206–212. doi: 10.4269/ajtmh.19-0467. PubMed DOI PMC

Reynolds M.G., Doty J.B., Mccollum A.M., Olson V.A., Nakazawa Y. Monkeypox re-emergence in Africa: A call to expand the concept and practice of One Health. Expert Rev. Anti-Infect. Ther. 2018;17:129–139. doi: 10.1080/14787210.2019.1567330. PubMed DOI PMC

Di Giulio D.B., Eckburg P.B. Human monkeypox: An emerging zoonosis. Lancet Infect. Dis. 2004;4:15–25. PubMed PMC

Shisler J.L. Immune Evasion Strategies of Molluscum Contagiosum Virus. Adv. Virus Res. 2015;92:201–252. doi: 10.1016/bs.aivir.2014.11.004. PubMed DOI

Romero R.M., Navarrete-Dechent C., Downey C. Molluscum contagiosum: An update and review of new perspectives in etiology, diagnosis, and treatment. Clin. Cosmet. Investig. Dermatol. 2019;12:373–381. doi: 10.2147/ccid.s187224. PubMed DOI PMC

Abrahao J.S., Campos R.K., Trindade Gde S., Guimaraes da Fonseca F., Ferreira P.C., Kroon E.G. Outbreak of severe zoonotic vaccinia virus infection, Southeastern Brazil. Emerg. Infect. Dis. 2015;21:695–698. PubMed PMC

Lu B., Cui L.-B., Gu M.-H., Shi C., Sun C.-W., Zhao K.-C., Bi J., Tan Z.-M., Guo X.-L., Huo X., et al. Outbreak of Vaccinia Virus Infection from Occupational Exposure, China, 2017. Emerg. Infect. Dis. 2019;25:1192–1195. doi: 10.3201/eid2506.171306. PubMed DOI PMC

Lima M.T., Oliveira G., Afonso J.A.B., Souto R.J.C., De Mendonça C.L., Dantas A.F.M., Abrahao J.S., Kroon E.G. An Update on the Known Host Range of the Brazilian Vaccinia Virus: An Outbreak in Buffalo Calves. Front. Microbiol. 2019;9:3327. doi: 10.3389/fmicb.2018.03327. PubMed DOI PMC

Silva N.I.O., De Oliveira J.S., Kroon E.G., Trindade G.D.S., Drumond B.P. Here, There, and Everywhere: The Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses. Viruses. 2020;13:43. doi: 10.3390/v13010043. PubMed DOI PMC

Wollenberg A., Vogel S., Sã¡rdy M., Glos K., Korting H., Ruzicka T. The Munich Outbreak of Cutaneous Cowpox Infection: Transmission by Infected Pet Rats. Acta Derm. Venereol. 2012;92:126–131. doi: 10.2340/00015555-1227. PubMed DOI

Snoeck R., Holý A., Dewolf-Peeters C., Oord J.V.D., De Clercq E., Andrei G. Antivaccinia Activities of Acyclic Nucleoside Phosphonate Derivatives in Epithelial Cells and Organotypic Cultures. Antimicrob. Agents Chemother. 2002;46:3356–3361. doi: 10.1128/aac.46.11.3356-3361.2002. PubMed DOI PMC

Keith K.A., Wan W.B., Ciesla S.L., Beadle J.R., Hostetler K.Y., Kern E.R. Inhibitory Activity of Alkoxyalkyl and Alkyl Esters of Cidofovir and Cyclic Cidofovir against Orthopoxvirus Replication In Vitro. Antimicrob. Agents Chemother. 2004;48:1869–1871. doi: 10.1128/aac.48.5.1869-1871.2004. PubMed DOI PMC

Hocková D., Holý A., Masojídková M., Andrei G., Snoeck R., De Clercq E., Balzarini J. 5-Substituted-2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidines-acycli c nucleoside phosphonate analogues with an-tiviral activity. J. Med. Chem. 2003;46:5064–5073. PubMed

De Clercq E., Holy A. Acyclic nucleoside phosphonates: A key class of antiviral drugs. Nat. Rev. Drug Discov. 2005;4:928–940. PubMed

Duraffour S., Snoeck R., Krecmerová M., Oord J.V.D., De Vos R., Holý A., Crance J.-M., Garin D., De Clercq E., Andrei G. Activities of Several Classes of Acyclic Nucleoside Phosphonates against Camelpox Virus Replication in Different Cell Culture Models. Antimicrob. Agents Chemother. 2007;51:4410–4419. doi: 10.1128/aac.00838-07. PubMed DOI PMC

Dal Pozzo F., Andrei G., Holy A., Van Den Oord J., Scagliarini A., De Clercq E., Snoeck R. Activities of acyclic nucleoside phosphonates against Orf virus in human and ovine cell monolayers and organotypic ovine raft cultures. Antimicrob Agents Chemother. 2005;49:4843–4852. PubMed PMC

Lebeau I., Andrei G., Dal Pozzo F., Beadle J.R., Hostetler K.Y., De Clercq E., Van Den Oord J., Snoeck R. Activities of alkoxyalkyl esters of cidofovir (CDV), cyclic CDV, and (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine against orthopoxviruses in cell monolayers and in organotypic cultures. Antimicrob Agents Chemother. 2006;50:2525–2529. PubMed PMC

Dal Pozzo F., Andrei G., Lebeau I., Beadle J.R., Hostetler K.Y., De Clercq E., Snoeck R. In vitro evaluation of the anti-orf virus activity of alkoxyalkyl esters of CDV, cCDV and (S)-HPMPA. Antiviral Res. 2007;75:52–57. PubMed

Hostetler K.Y. Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: Current state of the art. Antivir. Res. 2009;82:A84–A98. doi: 10.1016/j.antiviral.2009.01.005. PubMed DOI PMC

Magee W.C., Aldern K.A., Hostetler K.Y., Evans D.H. Cidofovir and (S)-9-[3-Hydroxy-(2-Phosphonomethoxy)Propyl]Adenine Are Highly Effective Inhibitors of Vaccinia Virus DNA Polymerase When Incorporated into the Template Strand. Antimicrob. Agents Chemother. 2008;52:586–597. doi: 10.1128/aac.01172-07. PubMed DOI PMC

Zahn K., Tchesnokov E.P., Götte M., Doublié S. Phosphonoformic Acid Inhibits Viral Replication by Trapping the Closed Form of the DNA Polymerase. J. Biol. Chem. 2011;286:25246–25255. doi: 10.1074/jbc.m111.248864. PubMed DOI PMC

Czarnecki M.W., Traktman P. The vaccinia virus DNA polymerase and its processivity factor. Virus Res. 2017;234:193–206. doi: 10.1016/j.virusres.2017.01.027. PubMed DOI PMC

Andrei G., Snoeck R. Cidofovir Activity against Poxvirus Infections. Viruses. 2010;2:2803–2830. doi: 10.3390/v2122803. PubMed DOI PMC

Sèle C., Gabel F., Gutsche I., Ivanov I., Burmeister W.P., Iseni F., Tarbouriech N. Low-Resolution Structure of Vaccinia Virus DNA Replication Machinery. J. Virol. 2012;87:1679–1689. doi: 10.1128/jvi.01533-12. PubMed DOI PMC

Andrei G., Gammon D.B., Fiten P., De Clercq E., Opdenakker G., Snoeck R., Evans D.H. Cidofovir resistance in vaccinia virus is linked to diminished virulence in mice. J. Virol. 2006;80:9391–9401. PubMed PMC

Farlow J., Ichou M.A., Huggins J., Ibrahim S. Comparative whole genome sequence analysis of wild-type and cidofovir-resistant monkeypoxvirus. Virol. J. 2010;7:110. doi: 10.1186/1743-422x-7-110. PubMed DOI PMC

Becker M.N., Obraztsova M., Kern E.R., Quenelle D.C., Keith K., Prichard M.N., Luo M., Moyer R.W. Isolation and characterization of cidofovir resistant vaccinia viruses. Virol. J. 2008;5:58. doi: 10.1186/1743-422x-5-58. PubMed DOI PMC

Kornbluth R.S., Smee D.F., Sidwell R.W., Snarsky V., Evans D.H., Hostetler K.Y. Mutations in the E9L polymerase gene of cidofo-vir-resistant vaccinia virus strain WR are associated with the drug resistance phenotype. Antimicrob. Agents Chemother. 2006;50:4038–4043. PubMed PMC

Gammon D.B., Snoeck R., Fiten P., Krecmerová M., Holyý A., De Clercq E., Opdenakker G., Evans D., Andrei G. Mechanism of Antiviral Drug Resistance of Vaccinia Virus: Identification of Residues in the Viral DNA Polymerase Conferring Differential Resistance to Antipoxvirus Drugs. J. Virol. 2008;82:12520–12534. doi: 10.1128/jvi.01528-08. PubMed DOI PMC

Duraffour S., Andrei G., Topalis D., Krečmerová M., Crance J.-M., Garin D., Snoeck R. Mutations Conferring Resistance to Viral DNA Polymerase Inhibitors in Camelpox Virus Give Different Drug-Susceptibility Profiles in Vaccinia Virus. J. Virol. 2012;86:7310–7325. doi: 10.1128/jvi.00355-12. PubMed DOI PMC

Taddie J.A., Traktman P. Genetic characterization of the vaccinia virus DNA polymerase: Identification of point mutations conferring altered drug sensitivities and reduced fidelity. J. Virol. 1991;65:869–879. PubMed PMC

Taddie J.A., Traktman P. Genetic characterization of the vaccinia virus DNA polymerase: Cytosine arabinoside resistance re-quires a variable lesion conferring phosphonoacetate resistance in conjunction with an invariant mutation localized to the 3′-5′ exonuclease domain. J. Virol. 1993;67:4323–4336. PubMed PMC

Tarbouriech N., Ducournau C., Hutin S., Mas P.J., Man P., Forest E., Hart D.J., Peyrefitte C.N., Burmeister W.P., Iseni F. The vaccinia virus DNA polymerase structure provides insights into the mode of processivity factor binding. Nat. Commun. 2017;8:1–12. doi: 10.1038/s41467-017-01542-z. PubMed DOI PMC

DeFilippes F.M. Site of the base change in the vaccinia virus DNA polymerase gene which confers aphidicolin resistance. J. Virol. 1989;63:4060–4063. PubMed PMC

Magee W.C., Hostetler K., Evans D.H. Mechanism of Inhibition of Vaccinia Virus DNA Polymerase by Cidofovir Diphosphate. Antimicrob. Agents Chemother. 2005;49:3153–3162. doi: 10.1128/aac.49.8.3153-3162.2005. PubMed DOI PMC

Gammon D.B., Evans D.H. The 3′-to-5′ Exonuclease Activity of Vaccinia Virus DNA Polymerase Is Essential and Plays a Role in Promoting Virus Genetic Recombination. J. Virol. 2009;83:4236–4250. doi: 10.1128/jvi.02255-08. PubMed DOI PMC

Balzarini J., Pannecouque C., Naesens L., Andrei G., Snoeck R., De Clercq E., Hockova D., Holy A. 6-[2-(Phosphonomethoxy)alkoxy]-2,4-diaminopyrimidines: A New Class of Acyclic Pyrimidine Nucleoside Phosphonates with Antiviral Activity. Nucleotides Nucleic Acids. 2004;23:1321–1327. PubMed

Andrei G., Fiten P., Froeyen M., De Clercq E., Opdenakker G., Snoeck R. DNA polymerase mutations in drug-resistant herpes simplex virus mutants determine in vivo neurovirulence and drug-enzyme interactions. Antivir. Ther. 2007;12:719–732. PubMed

Andrei G., Topalis D., Fiten P., McGuigan C., Balzarini J., Opdenakker G., Snoeck R. In Vitro-Selected Drug-Resistant Varicella-Zoster Virus Mutants in the Thymidine Kinase and DNA Polymerase Genes Yield Novel Phenotype-Genotype Associations and Highlight Differences between Antiherpesvirus Drugs. J. Virol. 2011;86:2641–2652. doi: 10.1128/jvi.06620-11. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Retrospective Analysis Revealed an April Occurrence of Monkeypox in the Czech Republic

. 2022 Aug 15 ; 14 (8) : . [epub] 20220815

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...