• This record comes from PubMed

Mixedness, Coherence and Entanglement in a Family of Three-Qubit States

. 2022 Feb 24 ; 24 (3) : . [epub] 20220224

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
003/RID/2018/19 Polish Minister of Science and Higher Education

We consider a family of states describing three-qubit systems. We derived formulas showing the relations between linear entropy and measures of coherence such as degree of coherence, first- and second-order correlation functions. We show that qubit-qubit states are strongly entangled when linear entropy reaches some range of values. For such states, we derived the conditions determining boundary values of linear entropy parametrized by measures of coherence.

See more in PubMed

Zernike F. The concept of degree of coherence and its application to optical problems. Physica. 1938;5:785–795. doi: 10.1016/S0031-8914(38)80203-2. DOI

Hanbury Brown R., Twiss R.Q. A Test of a New Type of Stellar Interferometer on Sirius. Nature. 1956;178:1046–1048. doi: 10.1038/1781046a0. DOI

Glauber R.J. The Quantum Theory of Optical Coherence. Phys. Rev. 1963;130:2529–2539. doi: 10.1103/PhysRev.130.2529. DOI

Glauber R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. A. 1963;131:2766–2788. doi: 10.1103/PhysRev.131.2766. DOI

Sudarshan E.C.G. Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett. 1963;10:277–279. doi: 10.1103/PhysRevLett.10.277. DOI

Mehta C.L., Sudarshan E.C.G. Relation between Quantum and Semiclassical Description of Optical Coherence. Phys. Rev. 1965;138:B274–B280. doi: 10.1103/PhysRev.138.B274. DOI

Peřina J. Coherence of Light. Kluwer; Dordrecht, The Netherlands: 1985.

Peřina J. Quantum Statistics of Linear and Nonlinear Optical Phenomena. Kluwer; Dordrecht, The Netherlands: 1991.

Mandel L., Wolf E. Optical Coherence and Quantum Optics. Cambridge University Press; Cambridge, UK: 1995.

Sun L., Li G., Gu W., Ficek Z. Generating coherence and entanglement with a finite-size atomic ensemble in a ring cavity. New J. Phys. 2011;13:093019. doi: 10.1088/1367-2630/13/9/093019. DOI

Sun L., Li G., Ficek Z. First-order coherence versus entanglement in a nanomechanical cavity. Phys. Rev. A. 2012;85:022327. doi: 10.1103/PhysRevA.85.022327. DOI

Bougouffa S., Ficek Z. Evidence of indistinguishability and entanglement determined by the energy-time uncertainty principle in a system of two strongly coupled bosonic modes. Phys. Rev. A. 2016;93:063848. doi: 10.1103/PhysRevA.93.063848. DOI

Liu J., Zhou Y.H., Huang J., Huang J.F., Liao J.Q. Quantum simulation of a three-mode optomechanical system based on the Fredkin-type interaction. Phys. Rev. A. 2021;104:053715. doi: 10.1103/PhysRevA.104.053715. DOI

Gisin N., Ribordy G., Tittel W., Zbinden H. Quantum cryptography. Rev. Mod. Phys. 2002;74:145–195. doi: 10.1103/RevModPhys.74.145. DOI

Ekert A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991;67:661–663. doi: 10.1103/PhysRevLett.67.661. PubMed DOI

Bennett C.H., Wiesner S.J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 1992;69:2881–2884. doi: 10.1103/PhysRevLett.69.2881. PubMed DOI

Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993;70:1895–1899. doi: 10.1103/PhysRevLett.70.1895. PubMed DOI

Grover L.K. Quantum Mechanics Helps in Searching for a Needle in a Haystack. Phys. Rev. Lett. 1997;79:325–328. doi: 10.1103/PhysRevLett.79.325. DOI

Zheng S.B., Guo G.C. Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED. Phys. Rev. Lett. 2000;85:2392–2395. doi: 10.1103/PhysRevLett.85.2392. PubMed DOI

Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. 10th ed. Cambridge University Press; Cambridge, UK: 2010.

Rieffel E.G., Polak W.H. Quantum Computing: A Gentle Introduction. MIT Press; Cambridge, MA, USA: 2011.

Estarellas M.P., D’Amico I., Spiller T.P. Robust quantum entanglement generation and generation-plus-storage protocols with spin chains. Phys. Rev. A. 2017;95:042335. doi: 10.1103/PhysRevA.95.042335. DOI

Bennett C.H., Brassard G., Popescu S., Schumacher B., Wootters W.K. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 1996;76:722. doi: 10.1103/PhysRevLett.76.722. PubMed DOI

Boschi D., Branca S., De Martini F., Hardy L., Popescu S. Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 1998;80:1121–1125. doi: 10.1103/PhysRevLett.80.1121. DOI

Bouwmeester D., Pan J.W., Mattle K., Eible M., Weinfurter H., Zeilinger A. Experimental quantum teleportation. Nature. 1997;390:575. doi: 10.1038/37539. DOI

Özdemir Ş.K., Bartkiewicz K., Liu Y.X., Miranowicz A. Teleportation of qubit states through dissipative channels: Conditions for surpassing the no-cloning limit. Phys. Rev. A. 2007;76:042325. doi: 10.1103/PhysRevA.76.042325. DOI

He Q., Rosales-Zárate L., Adesso G., Reid M.D. Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. Phys. Rev. Lett. 2015;115:180502. doi: 10.1103/PhysRevLett.115.180502. PubMed DOI

Kocsis S., Hall M.J.W., Bennet A.J., Saunders D.J., Pryde G.J. Experimental measurement-device-independent verification of quantum steering. Nat. Commun. 2015;6:5886. doi: 10.1038/ncomms6886. PubMed DOI

Ishizaka S., Hiroshima T. Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A. 2000;62:022310. doi: 10.1103/PhysRevA.62.022310. DOI

Munro W.J., James D.F.V., White A.G., Kwiat P.G. Maximizing the entanglement of two mixed qubits. Phys. Rev. A. 2001;64:030302. doi: 10.1103/PhysRevA.64.030302. DOI

Wei T.C., Nemoto K., Goldbart P.M., Kwiat P.G., Munro W.J., Verstraete F. Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A. 2003;67:022110. doi: 10.1103/PhysRevA.67.022110. DOI

Bandyopadhyay S. Entanglement, mixedness, and perfect local discrimination of orthogonal quantum states. Phys. Rev. A. 2012;85:042319. doi: 10.1103/PhysRevA.85.042319. DOI

Paulson K., Satyanarayana S. Bounds on mixedness and entanglement of quantum teleportation resources. Phys. Lett. A. 2017;381:1134–1137. doi: 10.1016/j.physleta.2017.02.010. DOI

Kalaga J.K., Leoński W. Quantum steering borders in three-qubit systems. Quantum Inf. Process. 2017;16:175. doi: 10.1007/s11128-017-1627-6. DOI

Ashrafpour M., Saghi Z. Research Paper: Investigation of the Relationship of the Degree of Mixedness and Entanglement of the Bipartite Spin Coherent States. Iran. J. Appl. Phys. 2021;11:7–15. doi: 10.22051/ijap.2021.35652.1202. DOI

Cheng S., Hall M.J.W. Complementarity relations for quantum coherence. Phys. Rev. A. 2015;92:042101. doi: 10.1103/PhysRevA.92.042101. DOI

Singh U., Bera M.N., Dhar H.S., Pati A.K. Maximally coherent mixed states: Complementarity between maximal coherence and mixedness. Phys. Rev. A. 2015;91:052115. doi: 10.1103/PhysRevA.91.052115. DOI

Rastegin A.E. Quantum-coherence quantifiers based on the Tsallis relative α entropies. Phys. Rev. A. 2016;93:032136. doi: 10.1103/PhysRevA.93.032136. DOI

Yao Y., Dong G.H., Xiao X., Sun C.P. Frobenius-norm-based measures of quantum coherence and asymmetry. Sci. Rep. 2016;6:32010. doi: 10.1038/srep32010. PubMed DOI PMC

Dixit K., Naikoo J., Banerjee S., Alok A.K. Study of coherence and mixedness in meson and neutrino systems. Eur. Phys. J. C. 2019;79:96. doi: 10.1140/epjc/s10052-019-6609-7. DOI

Radhakrishnan C., Ding Z., Shi F., Du J., Byrnes T. Basis-independent quantum coherence and its distribution. Ann. Phys. 2019;409:167906. doi: 10.1016/j.aop.2019.04.020. DOI

Streltsov A., Singh U., Dhar H.S., Bera M.N., Adesso G. Measuring Quantum Coherence with Entanglement. Phys. Rev. Lett. 2015;115:020403. doi: 10.1103/PhysRevLett.115.020403. PubMed DOI

Xi Z., Li Y., Fan H. Quantum coherence and correlations in quantum system. Sci. Rep. 2015;5:10922. doi: 10.1038/srep10922. PubMed DOI PMC

Ma J., Yadin B., Girolami D., Vedral V., Gu M. Converting Coherence to Quantum Correlations. Phys. Rev. Lett. 2016;116:160407. doi: 10.1103/PhysRevLett.116.160407. PubMed DOI

Killoran N., Steinhoff F.E.S., Plenio M.B. Converting Nonclassicality into Entanglement. Phys. Rev. Lett. 2016;116:080402. doi: 10.1103/PhysRevLett.116.080402. PubMed DOI

Chitambar E., Hsieh M.H. Relating the Resource Theories of Entanglement and Quantum Coherence. Phys. Rev. Lett. 2016;117:020402. doi: 10.1103/PhysRevLett.117.020402. PubMed DOI

Goswami S., Adhikari S., Majumdar A.S. Coherence and entanglement under three-qubit cloning operations. Quantum Inf. Process. 2018;18:36. doi: 10.1007/s11128-018-2150-0. DOI

Shamsi Z.H., Noreen A., Mushtaq A. Analysis of quantum coherence for localized fermionic systems in an accelerated motion. Results Phys. 2020;19:103302. doi: 10.1016/j.rinp.2020.103302. DOI

Fei J., Zhou D., Shim Y., Oh S., Hu X., Friesen M. Mediated gates between spin qubits. Phys. Rev. A. 2012;86:062328. doi: 10.1103/PhysRevA.86.062328. DOI

Iqbal M.S., Mahmood S., Razmi M.S.K., Zubairy M.S. Interaction of two two-level atoms with a single-mode quantized radiation field. J. Opt. Soc. Am. B. 1988;5:1312–1316. doi: 10.1364/JOSAB.5.001312. DOI

Ficek Z., Tanaś R. Entangled states and collective nonclassical effects in two-atom systems. Phys. Rep. 2002;372:369–443. doi: 10.1016/S0370-1573(02)00368-X. DOI

Leoński W., Kowalewska-Kudłaszyk A. Quantum Scissors—Finite-Dimensional States Engineering. In: Wolf E., editor. Progress in Optics. Volume 56. Elsevier; Amsterdam, The Netherlands: 2011. pp. 131–185. DOI

Leoński W., Tanaś R. Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. Phys. Rev. A. 1994;49:R20–R23. doi: 10.1103/PhysRevA.49.R20. PubMed DOI

Leoński W., Miranowicz A. Kerr nonlinear coupler and entanglement. J. Opt. B. 2004;6:S37–S42. doi: 10.1088/1464-4266/6/3/007. DOI

Acín A., Andrianov A., Jané E., Tarrach R. Three-qubit pure-state canonical forms. J. Phys. A Math. Gen. 2001;34:6725–6739. doi: 10.1088/0305-4470/34/35/301. DOI

Sabin C., Garcia-Alcaine G. A classification of entanglement in three-qubit systems. Eur. Phys. J. D. 2008;48:435–442. doi: 10.1140/epjd/e2008-00112-5. DOI

Enríquez M., Delgado F., Życzkowski K. Entanglement of Three-Qubit Random Pure States. Entropy. 2018;20:745. doi: 10.3390/e20100745. PubMed DOI PMC

Cao Z.L., Song W. Teleportation of a two-particle entangled state via W class states. Phys. A Stat. Mech. Its Appl. 2005;347:177–183. doi: 10.1016/j.physa.2004.08.033. DOI

Li L., Qiu D. The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A Math. Theor. 2007;40:10871–10885. doi: 10.1088/1751-8113/40/35/010. DOI

Kim J.S., Sanders B.C. Generalized W-class state and its monogamy relation. J. Phys. A Math. Theor. 2008;41:495301. doi: 10.1088/1751-8113/41/49/495301. DOI

Adhikari S., Gangopadhyay S. A Study of the Efficiency of the Class of W-States as a Quantum Channel. Int. J. Theor. Phys. 2009;48:403–408. doi: 10.1007/s10773-008-9813-z. DOI

Cui W., Chitambar E., Lo H.K. Randomly distilling W-class states into general configurations of two-party entanglement. Phys. Rev. A. 2011;84:052301. doi: 10.1103/PhysRevA.84.052301. DOI

Liang Y., Zheng Z.J., Zhu C.J. Monogamy and polygamy for generalized W-class states using Rényi-α entropy. Phys. Rev. A. 2020;102:062428. doi: 10.1103/PhysRevA.102.062428. DOI

Shi X., Chen L. Monogamy relations for the generalized W-class states beyond qubits. Phys. Rev. A. 2020;101:032344. doi: 10.1103/PhysRevA.101.032344. DOI

Shi B.S., Tomita A. Teleportation of an unknown state by W state. Phys. Lett. A. 2002;296:161–164. doi: 10.1016/S0375-9601(02)00257-8. DOI

Joo J., Park Y.J. Comment on “Teleportation of an unknown state by W states”: [Phys. Lett. A 296 (2002) 161] Phys. Lett. A. 2002;300:324–326. doi: 10.1016/S0375-9601(02)00804-6. DOI

Shi B.S., Tomita A. Reply to “Comment on: Teleportation of an unknown state by W state”: [Phys. Lett. A 300 (2002) 324] Phys. Lett. A. 2002;300:538–539. doi: 10.1016/S0375-9601(02)00787-9. DOI

Yang X., Bai M.Q., Mo Z.W. Controlled Dense Coding with the W State. Int. J. Theor. Phys. 2017;56:3525–3533. doi: 10.1007/s10773-017-3517-1. DOI

Zhou Y.S., Wang F., Luo M.X. Efficient Superdense Coding with W States. Int. J. Theor. Phys. 2018;57:1935–1941. doi: 10.1007/s10773-018-3718-2. DOI

Roy S., Chanda T., Das T., Sen(De) A., Sen U. Deterministic quantum dense coding networks. Phys. Lett. A. 2018;382:1709–1715. doi: 10.1016/j.physleta.2018.04.033. DOI

Jian W., Quan Z., Chao-Jing T. Quantum Secure Communication Scheme with W State. Commun. Theor. Phys. 2007;48:637–640. doi: 10.1088/0253-6102/48/4/013. DOI

Chen X.B., Wen Q.Y., Guo F.Z., Sun Y., Xu G., Zhu F.C. Controlled quantum secure direct communication with W state. Int. J. Quantum Inf. 2008;6:899–906. doi: 10.1142/S0219749908004195. DOI

Svozilík J., Vallés A., Peřina J., Torres J.P. Revealing Hidden Coherence in Partially Coherent Light. Phys. Rev. Lett. 2015;115:220501. doi: 10.1103/PhysRevLett.115.220501. PubMed DOI

Kalaga J.K., Leoński W., Peřina J. Einstein-Podolsky-Rosen steering and coherence in the family of entangled three-qubit states. Phys. Rev. A. 2018;97:042110. doi: 10.1103/PhysRevA.97.042110. DOI

Hill S., Wootters W.K. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett. 1997;78:5022–5025. doi: 10.1103/PhysRevLett.78.5022. DOI

Wootters W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998;80:2245–2248. doi: 10.1103/PhysRevLett.80.2245. DOI

Coffman V., Kundu J., Wootters W.K. Distributed entanglement. Phys. Rev. A. 2000;61:052306. doi: 10.1103/PhysRevA.61.052306. DOI

Gerry C.C., Knight P.L. Introductory Quantum Optics. Cambridge University Press; Cambridge, UK: 2005.

Walls D.F., Milburn G.J. Quantum Optics. 2nd ed. Springer; Berlin/Heidelberg, Gemany: 2008.

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...