Mixedness, Coherence and Entanglement in a Family of Three-Qubit States
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
003/RID/2018/19
Polish Minister of Science and Higher Education
PubMed
35327835
PubMed Central
PMC8947429
DOI
10.3390/e24030324
PII: e24030324
Knihovny.cz E-resources
- Keywords
- coherence, concurrence, linear entropy, purity of states, quantum entanglement, three-qubit systems,
- Publication type
- Journal Article MeSH
We consider a family of states describing three-qubit systems. We derived formulas showing the relations between linear entropy and measures of coherence such as degree of coherence, first- and second-order correlation functions. We show that qubit-qubit states are strongly entangled when linear entropy reaches some range of values. For such states, we derived the conditions determining boundary values of linear entropy parametrized by measures of coherence.
See more in PubMed
Zernike F. The concept of degree of coherence and its application to optical problems. Physica. 1938;5:785–795. doi: 10.1016/S0031-8914(38)80203-2. DOI
Hanbury Brown R., Twiss R.Q. A Test of a New Type of Stellar Interferometer on Sirius. Nature. 1956;178:1046–1048. doi: 10.1038/1781046a0. DOI
Glauber R.J. The Quantum Theory of Optical Coherence. Phys. Rev. 1963;130:2529–2539. doi: 10.1103/PhysRev.130.2529. DOI
Glauber R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. A. 1963;131:2766–2788. doi: 10.1103/PhysRev.131.2766. DOI
Sudarshan E.C.G. Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett. 1963;10:277–279. doi: 10.1103/PhysRevLett.10.277. DOI
Mehta C.L., Sudarshan E.C.G. Relation between Quantum and Semiclassical Description of Optical Coherence. Phys. Rev. 1965;138:B274–B280. doi: 10.1103/PhysRev.138.B274. DOI
Peřina J. Coherence of Light. Kluwer; Dordrecht, The Netherlands: 1985.
Peřina J. Quantum Statistics of Linear and Nonlinear Optical Phenomena. Kluwer; Dordrecht, The Netherlands: 1991.
Mandel L., Wolf E. Optical Coherence and Quantum Optics. Cambridge University Press; Cambridge, UK: 1995.
Sun L., Li G., Gu W., Ficek Z. Generating coherence and entanglement with a finite-size atomic ensemble in a ring cavity. New J. Phys. 2011;13:093019. doi: 10.1088/1367-2630/13/9/093019. DOI
Sun L., Li G., Ficek Z. First-order coherence versus entanglement in a nanomechanical cavity. Phys. Rev. A. 2012;85:022327. doi: 10.1103/PhysRevA.85.022327. DOI
Bougouffa S., Ficek Z. Evidence of indistinguishability and entanglement determined by the energy-time uncertainty principle in a system of two strongly coupled bosonic modes. Phys. Rev. A. 2016;93:063848. doi: 10.1103/PhysRevA.93.063848. DOI
Liu J., Zhou Y.H., Huang J., Huang J.F., Liao J.Q. Quantum simulation of a three-mode optomechanical system based on the Fredkin-type interaction. Phys. Rev. A. 2021;104:053715. doi: 10.1103/PhysRevA.104.053715. DOI
Gisin N., Ribordy G., Tittel W., Zbinden H. Quantum cryptography. Rev. Mod. Phys. 2002;74:145–195. doi: 10.1103/RevModPhys.74.145. DOI
Ekert A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991;67:661–663. doi: 10.1103/PhysRevLett.67.661. PubMed DOI
Bennett C.H., Wiesner S.J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 1992;69:2881–2884. doi: 10.1103/PhysRevLett.69.2881. PubMed DOI
Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993;70:1895–1899. doi: 10.1103/PhysRevLett.70.1895. PubMed DOI
Grover L.K. Quantum Mechanics Helps in Searching for a Needle in a Haystack. Phys. Rev. Lett. 1997;79:325–328. doi: 10.1103/PhysRevLett.79.325. DOI
Zheng S.B., Guo G.C. Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED. Phys. Rev. Lett. 2000;85:2392–2395. doi: 10.1103/PhysRevLett.85.2392. PubMed DOI
Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. 10th ed. Cambridge University Press; Cambridge, UK: 2010.
Rieffel E.G., Polak W.H. Quantum Computing: A Gentle Introduction. MIT Press; Cambridge, MA, USA: 2011.
Estarellas M.P., D’Amico I., Spiller T.P. Robust quantum entanglement generation and generation-plus-storage protocols with spin chains. Phys. Rev. A. 2017;95:042335. doi: 10.1103/PhysRevA.95.042335. DOI
Bennett C.H., Brassard G., Popescu S., Schumacher B., Wootters W.K. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 1996;76:722. doi: 10.1103/PhysRevLett.76.722. PubMed DOI
Boschi D., Branca S., De Martini F., Hardy L., Popescu S. Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 1998;80:1121–1125. doi: 10.1103/PhysRevLett.80.1121. DOI
Bouwmeester D., Pan J.W., Mattle K., Eible M., Weinfurter H., Zeilinger A. Experimental quantum teleportation. Nature. 1997;390:575. doi: 10.1038/37539. DOI
Özdemir Ş.K., Bartkiewicz K., Liu Y.X., Miranowicz A. Teleportation of qubit states through dissipative channels: Conditions for surpassing the no-cloning limit. Phys. Rev. A. 2007;76:042325. doi: 10.1103/PhysRevA.76.042325. DOI
He Q., Rosales-Zárate L., Adesso G., Reid M.D. Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. Phys. Rev. Lett. 2015;115:180502. doi: 10.1103/PhysRevLett.115.180502. PubMed DOI
Kocsis S., Hall M.J.W., Bennet A.J., Saunders D.J., Pryde G.J. Experimental measurement-device-independent verification of quantum steering. Nat. Commun. 2015;6:5886. doi: 10.1038/ncomms6886. PubMed DOI
Ishizaka S., Hiroshima T. Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A. 2000;62:022310. doi: 10.1103/PhysRevA.62.022310. DOI
Munro W.J., James D.F.V., White A.G., Kwiat P.G. Maximizing the entanglement of two mixed qubits. Phys. Rev. A. 2001;64:030302. doi: 10.1103/PhysRevA.64.030302. DOI
Wei T.C., Nemoto K., Goldbart P.M., Kwiat P.G., Munro W.J., Verstraete F. Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A. 2003;67:022110. doi: 10.1103/PhysRevA.67.022110. DOI
Bandyopadhyay S. Entanglement, mixedness, and perfect local discrimination of orthogonal quantum states. Phys. Rev. A. 2012;85:042319. doi: 10.1103/PhysRevA.85.042319. DOI
Paulson K., Satyanarayana S. Bounds on mixedness and entanglement of quantum teleportation resources. Phys. Lett. A. 2017;381:1134–1137. doi: 10.1016/j.physleta.2017.02.010. DOI
Kalaga J.K., Leoński W. Quantum steering borders in three-qubit systems. Quantum Inf. Process. 2017;16:175. doi: 10.1007/s11128-017-1627-6. DOI
Ashrafpour M., Saghi Z. Research Paper: Investigation of the Relationship of the Degree of Mixedness and Entanglement of the Bipartite Spin Coherent States. Iran. J. Appl. Phys. 2021;11:7–15. doi: 10.22051/ijap.2021.35652.1202. DOI
Cheng S., Hall M.J.W. Complementarity relations for quantum coherence. Phys. Rev. A. 2015;92:042101. doi: 10.1103/PhysRevA.92.042101. DOI
Singh U., Bera M.N., Dhar H.S., Pati A.K. Maximally coherent mixed states: Complementarity between maximal coherence and mixedness. Phys. Rev. A. 2015;91:052115. doi: 10.1103/PhysRevA.91.052115. DOI
Rastegin A.E. Quantum-coherence quantifiers based on the Tsallis relative α entropies. Phys. Rev. A. 2016;93:032136. doi: 10.1103/PhysRevA.93.032136. DOI
Yao Y., Dong G.H., Xiao X., Sun C.P. Frobenius-norm-based measures of quantum coherence and asymmetry. Sci. Rep. 2016;6:32010. doi: 10.1038/srep32010. PubMed DOI PMC
Dixit K., Naikoo J., Banerjee S., Alok A.K. Study of coherence and mixedness in meson and neutrino systems. Eur. Phys. J. C. 2019;79:96. doi: 10.1140/epjc/s10052-019-6609-7. DOI
Radhakrishnan C., Ding Z., Shi F., Du J., Byrnes T. Basis-independent quantum coherence and its distribution. Ann. Phys. 2019;409:167906. doi: 10.1016/j.aop.2019.04.020. DOI
Streltsov A., Singh U., Dhar H.S., Bera M.N., Adesso G. Measuring Quantum Coherence with Entanglement. Phys. Rev. Lett. 2015;115:020403. doi: 10.1103/PhysRevLett.115.020403. PubMed DOI
Xi Z., Li Y., Fan H. Quantum coherence and correlations in quantum system. Sci. Rep. 2015;5:10922. doi: 10.1038/srep10922. PubMed DOI PMC
Ma J., Yadin B., Girolami D., Vedral V., Gu M. Converting Coherence to Quantum Correlations. Phys. Rev. Lett. 2016;116:160407. doi: 10.1103/PhysRevLett.116.160407. PubMed DOI
Killoran N., Steinhoff F.E.S., Plenio M.B. Converting Nonclassicality into Entanglement. Phys. Rev. Lett. 2016;116:080402. doi: 10.1103/PhysRevLett.116.080402. PubMed DOI
Chitambar E., Hsieh M.H. Relating the Resource Theories of Entanglement and Quantum Coherence. Phys. Rev. Lett. 2016;117:020402. doi: 10.1103/PhysRevLett.117.020402. PubMed DOI
Goswami S., Adhikari S., Majumdar A.S. Coherence and entanglement under three-qubit cloning operations. Quantum Inf. Process. 2018;18:36. doi: 10.1007/s11128-018-2150-0. DOI
Shamsi Z.H., Noreen A., Mushtaq A. Analysis of quantum coherence for localized fermionic systems in an accelerated motion. Results Phys. 2020;19:103302. doi: 10.1016/j.rinp.2020.103302. DOI
Fei J., Zhou D., Shim Y., Oh S., Hu X., Friesen M. Mediated gates between spin qubits. Phys. Rev. A. 2012;86:062328. doi: 10.1103/PhysRevA.86.062328. DOI
Iqbal M.S., Mahmood S., Razmi M.S.K., Zubairy M.S. Interaction of two two-level atoms with a single-mode quantized radiation field. J. Opt. Soc. Am. B. 1988;5:1312–1316. doi: 10.1364/JOSAB.5.001312. DOI
Ficek Z., Tanaś R. Entangled states and collective nonclassical effects in two-atom systems. Phys. Rep. 2002;372:369–443. doi: 10.1016/S0370-1573(02)00368-X. DOI
Leoński W., Kowalewska-Kudłaszyk A. Quantum Scissors—Finite-Dimensional States Engineering. In: Wolf E., editor. Progress in Optics. Volume 56. Elsevier; Amsterdam, The Netherlands: 2011. pp. 131–185. DOI
Leoński W., Tanaś R. Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. Phys. Rev. A. 1994;49:R20–R23. doi: 10.1103/PhysRevA.49.R20. PubMed DOI
Leoński W., Miranowicz A. Kerr nonlinear coupler and entanglement. J. Opt. B. 2004;6:S37–S42. doi: 10.1088/1464-4266/6/3/007. DOI
Acín A., Andrianov A., Jané E., Tarrach R. Three-qubit pure-state canonical forms. J. Phys. A Math. Gen. 2001;34:6725–6739. doi: 10.1088/0305-4470/34/35/301. DOI
Sabin C., Garcia-Alcaine G. A classification of entanglement in three-qubit systems. Eur. Phys. J. D. 2008;48:435–442. doi: 10.1140/epjd/e2008-00112-5. DOI
Enríquez M., Delgado F., Życzkowski K. Entanglement of Three-Qubit Random Pure States. Entropy. 2018;20:745. doi: 10.3390/e20100745. PubMed DOI PMC
Cao Z.L., Song W. Teleportation of a two-particle entangled state via W class states. Phys. A Stat. Mech. Its Appl. 2005;347:177–183. doi: 10.1016/j.physa.2004.08.033. DOI
Li L., Qiu D. The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A Math. Theor. 2007;40:10871–10885. doi: 10.1088/1751-8113/40/35/010. DOI
Kim J.S., Sanders B.C. Generalized W-class state and its monogamy relation. J. Phys. A Math. Theor. 2008;41:495301. doi: 10.1088/1751-8113/41/49/495301. DOI
Adhikari S., Gangopadhyay S. A Study of the Efficiency of the Class of W-States as a Quantum Channel. Int. J. Theor. Phys. 2009;48:403–408. doi: 10.1007/s10773-008-9813-z. DOI
Cui W., Chitambar E., Lo H.K. Randomly distilling W-class states into general configurations of two-party entanglement. Phys. Rev. A. 2011;84:052301. doi: 10.1103/PhysRevA.84.052301. DOI
Liang Y., Zheng Z.J., Zhu C.J. Monogamy and polygamy for generalized W-class states using Rényi-α entropy. Phys. Rev. A. 2020;102:062428. doi: 10.1103/PhysRevA.102.062428. DOI
Shi X., Chen L. Monogamy relations for the generalized W-class states beyond qubits. Phys. Rev. A. 2020;101:032344. doi: 10.1103/PhysRevA.101.032344. DOI
Shi B.S., Tomita A. Teleportation of an unknown state by W state. Phys. Lett. A. 2002;296:161–164. doi: 10.1016/S0375-9601(02)00257-8. DOI
Joo J., Park Y.J. Comment on “Teleportation of an unknown state by W states”: [Phys. Lett. A 296 (2002) 161] Phys. Lett. A. 2002;300:324–326. doi: 10.1016/S0375-9601(02)00804-6. DOI
Shi B.S., Tomita A. Reply to “Comment on: Teleportation of an unknown state by W state”: [Phys. Lett. A 300 (2002) 324] Phys. Lett. A. 2002;300:538–539. doi: 10.1016/S0375-9601(02)00787-9. DOI
Yang X., Bai M.Q., Mo Z.W. Controlled Dense Coding with the W State. Int. J. Theor. Phys. 2017;56:3525–3533. doi: 10.1007/s10773-017-3517-1. DOI
Zhou Y.S., Wang F., Luo M.X. Efficient Superdense Coding with W States. Int. J. Theor. Phys. 2018;57:1935–1941. doi: 10.1007/s10773-018-3718-2. DOI
Roy S., Chanda T., Das T., Sen(De) A., Sen U. Deterministic quantum dense coding networks. Phys. Lett. A. 2018;382:1709–1715. doi: 10.1016/j.physleta.2018.04.033. DOI
Jian W., Quan Z., Chao-Jing T. Quantum Secure Communication Scheme with W State. Commun. Theor. Phys. 2007;48:637–640. doi: 10.1088/0253-6102/48/4/013. DOI
Chen X.B., Wen Q.Y., Guo F.Z., Sun Y., Xu G., Zhu F.C. Controlled quantum secure direct communication with W state. Int. J. Quantum Inf. 2008;6:899–906. doi: 10.1142/S0219749908004195. DOI
Svozilík J., Vallés A., Peřina J., Torres J.P. Revealing Hidden Coherence in Partially Coherent Light. Phys. Rev. Lett. 2015;115:220501. doi: 10.1103/PhysRevLett.115.220501. PubMed DOI
Kalaga J.K., Leoński W., Peřina J. Einstein-Podolsky-Rosen steering and coherence in the family of entangled three-qubit states. Phys. Rev. A. 2018;97:042110. doi: 10.1103/PhysRevA.97.042110. DOI
Hill S., Wootters W.K. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett. 1997;78:5022–5025. doi: 10.1103/PhysRevLett.78.5022. DOI
Wootters W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998;80:2245–2248. doi: 10.1103/PhysRevLett.80.2245. DOI
Coffman V., Kundu J., Wootters W.K. Distributed entanglement. Phys. Rev. A. 2000;61:052306. doi: 10.1103/PhysRevA.61.052306. DOI
Gerry C.C., Knight P.L. Introductory Quantum Optics. Cambridge University Press; Cambridge, UK: 2005.
Walls D.F., Milburn G.J. Quantum Optics. 2nd ed. Springer; Berlin/Heidelberg, Gemany: 2008.