• This record comes from PubMed

Identification of Endosymbiotic Virus in Small Extracellular Vesicles Derived from Trichomonas vaginalis

. 2022 Mar 17 ; 13 (3) : . [epub] 20220317

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Accumulated evidence suggests that the endosymbiotic Trichomonasvirus (TVV) may play a role in the pathogenesis and drug susceptibility of Trichomonas vaginalis. Several reports have shown that extracellular vesicles (EVs) released from TVV-positive (TVV+) trichomonads can modulate the immune response in human vaginal epithelial cells and animal models. These results prompted us to examine whether EVs released from TVV+ isolates contained TVV. We isolated small extracellular vesicles (sEVs) from six T. vaginalis isolates that were either TVV free (ATCC 50143), harbored a single (ATCC 30236, ATCC 30238, T1), two (ATCC PRA-98), or three TVV subspecies (ATCC 50148). The presence of TVV subspecies in the six isolates was observed using reverse transcription-polymerase chain reaction (RT-PCR). Transmission electron microscopy (TEM) confirmed the presence of cup-shaped sEVs with a size range from 30-150 nm. Trichomonas vaginalis tetraspanin (TvTSP1; TVAG_019180), the classical exosome marker, was identified in all the sEV preparations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that all the sEVs isolated from TVV+ isolates contain viral capsid proteins derived from the same TVV subspecies in that isolate as demonstrated by RT-PCR. To provide more comprehensive information on the TVV subspecies population in other T. vaginalis isolates, we investigated the distribution of TVV subspecies in twenty-four isolates by mining the New-Generation Sequencing (NGS) RNAseq datasets. Our results should be beneficial for future studies investigating the role of TVV on the pathogenicity of T. vaginalis and the possible transmission of virus subspecies among different isolates via sEVs.

See more in PubMed

Sexually Transmitted Infections (STIs) [(accessed on 22 November 2021)]. Available online: https://www.who.int/en/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis)

Wendel K.A., Rompalo A.M., Erbelding E.J., Chang T.H., Alderete J.F. Double-stranded RNA viral infection of Trichomonas vaginalis infecting patients attending a sexually transmitted diseases clinic. J. Infect. Dis. 2002;186:558–561. doi: 10.1086/341832. PubMed DOI

Patel E.U., Gaydos C.A., Packman Z.R., Quinn T.C., Tobian A.A.R. Prevalence and correlates of Trichomonas vaginalis infection among men and women in the United States. Clin. Infect. Dis. 2018;67:211–217. doi: 10.1093/cid/ciy079. PubMed DOI PMC

Swygard H., Seña A.C., Hobbs M.M., Cohen M.S. Trichomoniasis: Clinical manifestations, diagnosis and management. Sex. Transm. Infect. 2004;80:91–95. doi: 10.1136/sti.2003.005124. PubMed DOI PMC

Kreisel K.M., Spicknall I.H., Gargano J.W., Lewis F.M.T., Lewis R.M., Markowitz L.E., Roberts H., Johnson A.S., Song R., St Cyr S.B., et al. Sexually transmitted infections among US women and men: Prevalence and incidence estimates, 2018. Sex Transm. Dis. 2021;48:208–214. doi: 10.1097/OLQ.0000000000001355. PubMed DOI PMC

Twu O., de Miguel N., Lustig G., Stevens G.C., Vashisht A.A., Wohlschlegel J.A., Johnson P.J. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host:parasite interactions. PLoS Pathog. 2013;9:e1003482. doi: 10.1371/journal.ppat.1003482. PubMed DOI PMC

Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596. PubMed DOI

Carrera-Bravo C., Koh E.Y., Tan K.S.W. The roles of parasite-derived extracellular vesicles in disease and host-parasite communication. Parasitol. Int. 2021;83:102373. doi: 10.1016/j.parint.2021.102373. PubMed DOI

Charrin S., Jouannet S., Boucheix C., Rubinstein E. Tetraspanins at a glance. J. Cell Sci. 2014;127:3641–3648. doi: 10.1242/jcs.154906. PubMed DOI

Hemler M.E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol. 2003;19:397–422. doi: 10.1146/annurev.cellbio.19.111301.153609. PubMed DOI

Pols M.S., Klumperman J. Trafficking and function of the tetraspanin CD63. Exp. Cell Res. 2009;315:1584–1592. doi: 10.1016/j.yexcr.2008.09.020. PubMed DOI

Olmos-Ortiz L.M., Barajas-Mendiola M.A., Barrios-Rodiles M., Castellano L.E., Arias-Negrete S., Avila E.E., Cuéllar-Mata P. Trichomonas vaginalis exosome-like vesicles modify the cytokine profile and reduce inflammation in parasite-infected mice. Parasite Immunol. 2017;39:e12426. doi: 10.1111/pim.12426. PubMed DOI

Flegr J., Cerkasov J., Kulda J., Tachezy J., Stokrová J. The dsRNA of Trichomonas vaginalis is associated with virus-like particles and does not correlate with metronidazole resistance. Folia Microbiol. 1987;32:345–348. doi: 10.1007/BF02877224. PubMed DOI

Wang A.L., Wang C.C. The double-stranded RNA in Trichomonas vaginalis may originate from virus-like particles. Proc. Natl. Acad. Sci. USA. 1986;83:7956–7960. doi: 10.1073/pnas.83.20.7956. PubMed DOI PMC

Tai J.-H., Ip C.-F. The cDNA sequence of Trichomonas vaginalis virus-T1 double-stranded RNA. Virology. 1995;206:773–777. doi: 10.1016/S0042-6822(95)80008-5. PubMed DOI

Bokharaei-Salim F., Esteghamati A., Khanaliha K., Esghaei M., Donyavi T., Salemi B. The first detection of co-infection of double-stranded RNA virus 1, 2 and 3 in Iranian isolates of Trichomonas vaginalis. Iran. J. Parasitol. 2020;15:357–363. doi: 10.18502/ijpa.v15i3.4200. PubMed DOI PMC

Goodman R.P., Freret T.S., Kula T., Geller A.M., Talkington M.W., Tang-Fernandez V., Suciu O., Demidenko A.A., Ghabrial S.A., Beach D.H., et al. Clinical isolates of Trichomonas vaginalis concurrently infected by strains of up to four Trichomonasvirus species (family Totiviridae) J. Virol. 2011;85:4258–4270. doi: 10.1128/JVI.00220-11. PubMed DOI PMC

Jehee I., van der Veer C., Himschoot M., Hermans M., Bruisten S. Direct detection of Trichomonas vaginalis virus in Trichomonas vaginalis positive clinical samples from the Netherlands. J. Virol. Methods. 2017;250:1–5. doi: 10.1016/j.jviromet.2017.09.007. PubMed DOI

Goodman R.P., Ghabrial S.A., Fichorova R.N., Nibert M.L. Trichomonasvirus: A new genus of protozoan viruses in the family Totiviridae. Arch. Virol. 2011;156:171–179. doi: 10.1007/s00705-010-0832-8. PubMed DOI PMC

Provenzano D., Khoshnan A., Alderete J.F. Involvement of dsRNA virus in the protein composition and growth kinetics of host Trichomonas vaginalis. Arch. Virol. 1997;142:939–952. doi: 10.1007/s007050050130. PubMed DOI

Arroyo R., Alderete J.F. Two Trichomonas vaginalis surface proteinases bind to host epithelial cells and are related to levels of cytoadherence and cytotoxicity. Arch. Med. Res. 1995;26:279–285. PubMed

Lustig G., Ryan C.M., Secor W.E., Johnson P.J. Trichomonas vaginalis contact-dependent cytolysis of epithelial cells. Infect. Immun. 2013;81:1411–1419. doi: 10.1128/IAI.01244-12. PubMed DOI PMC

Khoshnan A., Alderete J.F. Trichomonas vaginalis with a double-stranded RNA virus has upregulated levels of phenotypically variable immunogen mRNA. J. Virol. 1994;68:4035–4038. doi: 10.1128/jvi.68.6.4035-4038.1994. PubMed DOI PMC

Wang A., Wang C.C., Alderete J.F. Trichomonas vaginalis phenotypic variation occurs only among trichomonads infected with the double-stranded RNA virus. J. Exp. Med. 1987;166:142–150. doi: 10.1084/jem.166.1.142. PubMed DOI PMC

Govender Y., Chan T., Yamamoto H.S., Budnik B., Fichorova R.N. The role of small extracellular vesicles in viral-protozoan symbiosis: Lessons from Trichomonasvirus in an isogenic host parasite model. Front. Cell. Infect. Microbiol. 2020;10:591172. doi: 10.3389/fcimb.2020.591172. PubMed DOI PMC

Diamond L.S., Clark C.G., Cunnick C.C. YI-S, a casein-free medium for axenic cultivation of Entamoeba histolytica, related Entamoeba, Giardia intestinalis and Trichomonas vaginalis. J. Eukaryot. Microbiol. 1995;42:277–278. doi: 10.1111/j.1550-7408.1995.tb01579.x. PubMed DOI

Gupta S., Rawat S., Arora V., Kottarath S.K., Dinda A.K., Vaishnav P.K., Nayak B., Mohanty S. An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells. Stem Cell Res. Ther. 2018;9:180–190. doi: 10.1186/s13287-018-0923-0. PubMed DOI PMC

Chen P.-C., Huang M.-N., Chang J.-F., Liu C.-C., Chen C.-K., Hsieh C.-H. Snake venom proteome and immuno-profiling of the hundred-pace viper, Deinagkistrodon acutus, in Taiwan. Acta Trop. 2019;189:137–144. doi: 10.1016/j.actatropica.2018.09.017. PubMed DOI

Wu C.-C., Hsu C.-W., Chen C.-D., Yu C.-J., Chang K.-P., Tai D.-I., Liu H.-P., Su W.-H., Chang Y.-S., Yu J.-S. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas. Mol. Cell. Proteom. 2010;9:1100–1117. doi: 10.1074/mcp.M900398-MCP200. PubMed DOI PMC

Nievas Y.R., Coceres V.M., Midlej V., de Souza W., Benchimol M., Pereira-Neves A., Vashisht A.A., Wohlschlegel J.A., Johnson P.J., De Miguel N. Membrane-shed vesicles from the parasite Trichomonas vaginalis: Characterization and their association with cell interaction. Cell. Mol. Life Sci. 2018;75:2211–2226. doi: 10.1007/s00018-017-2726-3. PubMed DOI PMC

de Miguel N., Riestra A., Johnson P.J. Reversible association of tetraspanin with Trichomonas vaginalis flagella upon adherence to host cells. Cell. Microbiol. 2012;14:1797–1807. doi: 10.1111/cmi.12003. PubMed DOI PMC

Coceres V.M., Alonso A.M., Nievas Y.R., Midlej V., Frontera L., Benchimol M., Johnson P.J., de Miguel N. The C-terminal tail of tetraspanin proteins regulates their intracellular distribution in the parasite Trichomonas vaginalis. Cell. Microbiol. 2015;17:1217–1229. doi: 10.1111/cmi.12431. PubMed DOI

Wang A.L., Wang C.C. Discovery of a specific double-stranded RNA virus in Giardia lamblia. Mol. Biochem. Parasitol. 1986;21:269–276. doi: 10.1016/0166-6851(86)90132-5. PubMed DOI

Widmer G., Dooley S. Phylogenetic analysis of Leishmania RNA virus and Leishmania suggests ancient virus-parasite association. Nucleic Acids Res. 1995;23:2300–2304. doi: 10.1093/nar/23.12.2300. PubMed DOI PMC

Nalçacı M., Karakuş M., Yılmaz B., Demir S., Özbilgin A., Özbel Y., Töz S. Detection of Leishmania RNA virus 2 in Leishmania species from Turkey. Trans. R. Soc. Trop. Med. Hyg. 2019;113:410–417. doi: 10.1093/trstmh/trz023. PubMed DOI

Charon J., Grigg M.J., Eden J.S., Piera K.A., Rana H., William T., Rose K., Davenport M.P., Anstey N.M., Holmes E.C. Novel RNA viruses associated with Plasmodium vivax in human malaria and Leucocytozoon parasites in avian disease. PLoS Pathog. 2019;15:e1008216. doi: 10.1371/journal.ppat.1008216. PubMed DOI PMC

Khramtsov N.V., Woods K.M., Nesterenko M.V., Dykstra C.C., Upton S.J. Virus-like, double-stranded RNAs in the parasitic protozoan Cryptosporidium parvum. Mol. Microbiol. 1997;26:289–300. doi: 10.1046/j.1365-2958.1997.5721933.x. PubMed DOI

Nibert M.L., Woods K.M., Upton S.J., Ghabrial S.A. Cryspovirus: A new genus of protozoan viruses in the family Partitiviridae. Arch. Virol. 2009;154:1959–1965. doi: 10.1007/s00705-009-0513-7. PubMed DOI

Atayde V.D., da Silva Lira Filho A., Chaparro V., Zimmermann A., Martel C., Jaramillo M., Olivier M. Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat. Microbiol. 2019;4:714–723. doi: 10.1038/s41564-018-0352-y. PubMed DOI

Parent K.N., Takagi Y., Cardone G., Olson N.H., Ericsson M., Yang M., Lee Y., Asara J.M., Fichorova R.N., Baker T.S., et al. Structure of a protozoan virus from the human genitourinary parasite Trichomonas vaginalis. MBio. 2013;4:e00056-13. doi: 10.1128/mBio.00056-13. PubMed DOI PMC

Rai A.K., Johnson P.J. Trichomonas vaginalis extracellular vesicles are internalized by host cells using proteoglycans and caveolin-dependent endocytosis. Proc. Natl. Acad. Sci. USA. 2019;116:21354–21360. doi: 10.1073/pnas.1912356116. PubMed DOI PMC

Marti M., Johnson P.J. Emerging roles for extracellular vesicles in parasitic infections. Curr. Opin. Microbiol. 2016;32:66–70. doi: 10.1016/j.mib.2016.04.008. PubMed DOI PMC

Wu Z., Wang L., Li J., Wang L., Wu Z., Sun X. Extracellular vesicle-mediated communication within host-parasite interactions. Front. Immunol. 2019;9:3066. doi: 10.3389/fimmu.2018.03066. PubMed DOI PMC

Masha S.C., Cools P., Crucitti T., Sanders E.J., Vaneechoutte M. Molecular typing of Trichomonas vaginalis isolates by actin gene sequence analysis and carriage of T. vaginalis viruses. Parasit. Vectors. 2017;10:537. doi: 10.1186/s13071-017-2496-7. PubMed DOI PMC

Da Luz Becker D., dos Santos O., Frasson A.P., de Vargas Rigo G., Macedo A.J., Tasca T. High rates of double-stranded RNA viruses and Mycoplasma hominis in Trichomonas vaginalis clinical isolates in South Brazil. Infect. Genet. Evol. 2015;34:181–187. doi: 10.1016/j.meegid.2015.07.005. PubMed DOI

Rivera W.L., Justo C.A.C., Relucio-San Diego M.A.C.V., Loyola L.M. Detection and molecular characterization of double-stranded RNA viruses in Philippine Trichomonas vaginalis isolates. J. Microbiol. Immunol. Infect. 2017;50:669–676. doi: 10.1016/j.jmii.2015.07.016. PubMed DOI

Margarita V., Marongiu A., Diaz N., Dessì D., Fiori P.L., Rappelli P. Prevalence of double-stranded RNA virus in Trichomonas vaginalis isolated in Italy and association with the symbiont Mycoplasma hominis. Parasitol Res. 2019;118:3565–3570. doi: 10.1007/s00436-019-06469-6. PubMed DOI

Fichorova R.N., Lee Y., Yamamoto H.S., Takagi Y., Hayes G.R., Goodman R.P., Chepa-Lotrea X., Buck O.R., Murray R., Kula T., et al. Endobiont viruses sensed by the human host—Beyond conventional antiparasitic therapy. PLoS ONE. 2012;7:e48418. doi: 10.1371/journal.pone.0048418. PubMed DOI PMC

Fichorova R., Fraga J., Rappelli P., Fiori P.L. Trichomonas vaginalis infection in symbiosis with Trichomonasvirus and Mycoplasma. Res. Microbiol. 2017;168:882–891. doi: 10.1016/j.resmic.2017.03.005. PubMed DOI PMC

Narayanasamy R.K., Rada P., Zdrha A., van Ranst M., Neyts J., Tachezy J. Cytidine nucleoside analog is an effective antiviral drug against Trichomonasvirus. J. Microbiol. Immunol. Infect. 2021 doi: 10.1016/j.jmii.2021.08.008. In press. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...