Identification of Endosymbiotic Virus in Small Extracellular Vesicles Derived from Trichomonas vaginalis
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35328084
PubMed Central
PMC8951798
DOI
10.3390/genes13030531
PII: genes13030531
Knihovny.cz E-resources
- Keywords
- New-Generation Sequencing, Trichomonas vaginalis, Trichomonasvirus, extracellular vesicles, proteomics,
- MeSH
- Chromatography, Liquid MeSH
- RNA, Double-Stranded MeSH
- Extracellular Vesicles * genetics MeSH
- RNA Viruses * genetics MeSH
- Tandem Mass Spectrometry MeSH
- Trichomonas vaginalis * genetics MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Double-Stranded MeSH
Accumulated evidence suggests that the endosymbiotic Trichomonasvirus (TVV) may play a role in the pathogenesis and drug susceptibility of Trichomonas vaginalis. Several reports have shown that extracellular vesicles (EVs) released from TVV-positive (TVV+) trichomonads can modulate the immune response in human vaginal epithelial cells and animal models. These results prompted us to examine whether EVs released from TVV+ isolates contained TVV. We isolated small extracellular vesicles (sEVs) from six T. vaginalis isolates that were either TVV free (ATCC 50143), harbored a single (ATCC 30236, ATCC 30238, T1), two (ATCC PRA-98), or three TVV subspecies (ATCC 50148). The presence of TVV subspecies in the six isolates was observed using reverse transcription-polymerase chain reaction (RT-PCR). Transmission electron microscopy (TEM) confirmed the presence of cup-shaped sEVs with a size range from 30-150 nm. Trichomonas vaginalis tetraspanin (TvTSP1; TVAG_019180), the classical exosome marker, was identified in all the sEV preparations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that all the sEVs isolated from TVV+ isolates contain viral capsid proteins derived from the same TVV subspecies in that isolate as demonstrated by RT-PCR. To provide more comprehensive information on the TVV subspecies population in other T. vaginalis isolates, we investigated the distribution of TVV subspecies in twenty-four isolates by mining the New-Generation Sequencing (NGS) RNAseq datasets. Our results should be beneficial for future studies investigating the role of TVV on the pathogenicity of T. vaginalis and the possible transmission of virus subspecies among different isolates via sEVs.
Department of Parasitology College of Medicine Chang Gung University Taoyuan 333 Taiwan
Genomic Medicine Core Laboratory Chang Gung Memorial Hospital Linkou Branch Taoyuan 333 Taiwan
See more in PubMed
Sexually Transmitted Infections (STIs) [(accessed on 22 November 2021)]. Available online: https://www.who.int/en/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis)
Wendel K.A., Rompalo A.M., Erbelding E.J., Chang T.H., Alderete J.F. Double-stranded RNA viral infection of Trichomonas vaginalis infecting patients attending a sexually transmitted diseases clinic. J. Infect. Dis. 2002;186:558–561. doi: 10.1086/341832. PubMed DOI
Patel E.U., Gaydos C.A., Packman Z.R., Quinn T.C., Tobian A.A.R. Prevalence and correlates of Trichomonas vaginalis infection among men and women in the United States. Clin. Infect. Dis. 2018;67:211–217. doi: 10.1093/cid/ciy079. PubMed DOI PMC
Swygard H., Seña A.C., Hobbs M.M., Cohen M.S. Trichomoniasis: Clinical manifestations, diagnosis and management. Sex. Transm. Infect. 2004;80:91–95. doi: 10.1136/sti.2003.005124. PubMed DOI PMC
Kreisel K.M., Spicknall I.H., Gargano J.W., Lewis F.M.T., Lewis R.M., Markowitz L.E., Roberts H., Johnson A.S., Song R., St Cyr S.B., et al. Sexually transmitted infections among US women and men: Prevalence and incidence estimates, 2018. Sex Transm. Dis. 2021;48:208–214. doi: 10.1097/OLQ.0000000000001355. PubMed DOI PMC
Twu O., de Miguel N., Lustig G., Stevens G.C., Vashisht A.A., Wohlschlegel J.A., Johnson P.J. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host:parasite interactions. PLoS Pathog. 2013;9:e1003482. doi: 10.1371/journal.ppat.1003482. PubMed DOI PMC
Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596. PubMed DOI
Carrera-Bravo C., Koh E.Y., Tan K.S.W. The roles of parasite-derived extracellular vesicles in disease and host-parasite communication. Parasitol. Int. 2021;83:102373. doi: 10.1016/j.parint.2021.102373. PubMed DOI
Charrin S., Jouannet S., Boucheix C., Rubinstein E. Tetraspanins at a glance. J. Cell Sci. 2014;127:3641–3648. doi: 10.1242/jcs.154906. PubMed DOI
Hemler M.E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol. 2003;19:397–422. doi: 10.1146/annurev.cellbio.19.111301.153609. PubMed DOI
Pols M.S., Klumperman J. Trafficking and function of the tetraspanin CD63. Exp. Cell Res. 2009;315:1584–1592. doi: 10.1016/j.yexcr.2008.09.020. PubMed DOI
Olmos-Ortiz L.M., Barajas-Mendiola M.A., Barrios-Rodiles M., Castellano L.E., Arias-Negrete S., Avila E.E., Cuéllar-Mata P. Trichomonas vaginalis exosome-like vesicles modify the cytokine profile and reduce inflammation in parasite-infected mice. Parasite Immunol. 2017;39:e12426. doi: 10.1111/pim.12426. PubMed DOI
Flegr J., Cerkasov J., Kulda J., Tachezy J., Stokrová J. The dsRNA of Trichomonas vaginalis is associated with virus-like particles and does not correlate with metronidazole resistance. Folia Microbiol. 1987;32:345–348. doi: 10.1007/BF02877224. PubMed DOI
Wang A.L., Wang C.C. The double-stranded RNA in Trichomonas vaginalis may originate from virus-like particles. Proc. Natl. Acad. Sci. USA. 1986;83:7956–7960. doi: 10.1073/pnas.83.20.7956. PubMed DOI PMC
Tai J.-H., Ip C.-F. The cDNA sequence of Trichomonas vaginalis virus-T1 double-stranded RNA. Virology. 1995;206:773–777. doi: 10.1016/S0042-6822(95)80008-5. PubMed DOI
Bokharaei-Salim F., Esteghamati A., Khanaliha K., Esghaei M., Donyavi T., Salemi B. The first detection of co-infection of double-stranded RNA virus 1, 2 and 3 in Iranian isolates of Trichomonas vaginalis. Iran. J. Parasitol. 2020;15:357–363. doi: 10.18502/ijpa.v15i3.4200. PubMed DOI PMC
Goodman R.P., Freret T.S., Kula T., Geller A.M., Talkington M.W., Tang-Fernandez V., Suciu O., Demidenko A.A., Ghabrial S.A., Beach D.H., et al. Clinical isolates of Trichomonas vaginalis concurrently infected by strains of up to four Trichomonasvirus species (family Totiviridae) J. Virol. 2011;85:4258–4270. doi: 10.1128/JVI.00220-11. PubMed DOI PMC
Jehee I., van der Veer C., Himschoot M., Hermans M., Bruisten S. Direct detection of Trichomonas vaginalis virus in Trichomonas vaginalis positive clinical samples from the Netherlands. J. Virol. Methods. 2017;250:1–5. doi: 10.1016/j.jviromet.2017.09.007. PubMed DOI
Goodman R.P., Ghabrial S.A., Fichorova R.N., Nibert M.L. Trichomonasvirus: A new genus of protozoan viruses in the family Totiviridae. Arch. Virol. 2011;156:171–179. doi: 10.1007/s00705-010-0832-8. PubMed DOI PMC
Provenzano D., Khoshnan A., Alderete J.F. Involvement of dsRNA virus in the protein composition and growth kinetics of host Trichomonas vaginalis. Arch. Virol. 1997;142:939–952. doi: 10.1007/s007050050130. PubMed DOI
Arroyo R., Alderete J.F. Two Trichomonas vaginalis surface proteinases bind to host epithelial cells and are related to levels of cytoadherence and cytotoxicity. Arch. Med. Res. 1995;26:279–285. PubMed
Lustig G., Ryan C.M., Secor W.E., Johnson P.J. Trichomonas vaginalis contact-dependent cytolysis of epithelial cells. Infect. Immun. 2013;81:1411–1419. doi: 10.1128/IAI.01244-12. PubMed DOI PMC
Khoshnan A., Alderete J.F. Trichomonas vaginalis with a double-stranded RNA virus has upregulated levels of phenotypically variable immunogen mRNA. J. Virol. 1994;68:4035–4038. doi: 10.1128/jvi.68.6.4035-4038.1994. PubMed DOI PMC
Wang A., Wang C.C., Alderete J.F. Trichomonas vaginalis phenotypic variation occurs only among trichomonads infected with the double-stranded RNA virus. J. Exp. Med. 1987;166:142–150. doi: 10.1084/jem.166.1.142. PubMed DOI PMC
Govender Y., Chan T., Yamamoto H.S., Budnik B., Fichorova R.N. The role of small extracellular vesicles in viral-protozoan symbiosis: Lessons from Trichomonasvirus in an isogenic host parasite model. Front. Cell. Infect. Microbiol. 2020;10:591172. doi: 10.3389/fcimb.2020.591172. PubMed DOI PMC
Diamond L.S., Clark C.G., Cunnick C.C. YI-S, a casein-free medium for axenic cultivation of Entamoeba histolytica, related Entamoeba, Giardia intestinalis and Trichomonas vaginalis. J. Eukaryot. Microbiol. 1995;42:277–278. doi: 10.1111/j.1550-7408.1995.tb01579.x. PubMed DOI
Gupta S., Rawat S., Arora V., Kottarath S.K., Dinda A.K., Vaishnav P.K., Nayak B., Mohanty S. An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells. Stem Cell Res. Ther. 2018;9:180–190. doi: 10.1186/s13287-018-0923-0. PubMed DOI PMC
Chen P.-C., Huang M.-N., Chang J.-F., Liu C.-C., Chen C.-K., Hsieh C.-H. Snake venom proteome and immuno-profiling of the hundred-pace viper, Deinagkistrodon acutus, in Taiwan. Acta Trop. 2019;189:137–144. doi: 10.1016/j.actatropica.2018.09.017. PubMed DOI
Wu C.-C., Hsu C.-W., Chen C.-D., Yu C.-J., Chang K.-P., Tai D.-I., Liu H.-P., Su W.-H., Chang Y.-S., Yu J.-S. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas. Mol. Cell. Proteom. 2010;9:1100–1117. doi: 10.1074/mcp.M900398-MCP200. PubMed DOI PMC
Nievas Y.R., Coceres V.M., Midlej V., de Souza W., Benchimol M., Pereira-Neves A., Vashisht A.A., Wohlschlegel J.A., Johnson P.J., De Miguel N. Membrane-shed vesicles from the parasite Trichomonas vaginalis: Characterization and their association with cell interaction. Cell. Mol. Life Sci. 2018;75:2211–2226. doi: 10.1007/s00018-017-2726-3. PubMed DOI PMC
de Miguel N., Riestra A., Johnson P.J. Reversible association of tetraspanin with Trichomonas vaginalis flagella upon adherence to host cells. Cell. Microbiol. 2012;14:1797–1807. doi: 10.1111/cmi.12003. PubMed DOI PMC
Coceres V.M., Alonso A.M., Nievas Y.R., Midlej V., Frontera L., Benchimol M., Johnson P.J., de Miguel N. The C-terminal tail of tetraspanin proteins regulates their intracellular distribution in the parasite Trichomonas vaginalis. Cell. Microbiol. 2015;17:1217–1229. doi: 10.1111/cmi.12431. PubMed DOI
Wang A.L., Wang C.C. Discovery of a specific double-stranded RNA virus in Giardia lamblia. Mol. Biochem. Parasitol. 1986;21:269–276. doi: 10.1016/0166-6851(86)90132-5. PubMed DOI
Widmer G., Dooley S. Phylogenetic analysis of Leishmania RNA virus and Leishmania suggests ancient virus-parasite association. Nucleic Acids Res. 1995;23:2300–2304. doi: 10.1093/nar/23.12.2300. PubMed DOI PMC
Nalçacı M., Karakuş M., Yılmaz B., Demir S., Özbilgin A., Özbel Y., Töz S. Detection of Leishmania RNA virus 2 in Leishmania species from Turkey. Trans. R. Soc. Trop. Med. Hyg. 2019;113:410–417. doi: 10.1093/trstmh/trz023. PubMed DOI
Charon J., Grigg M.J., Eden J.S., Piera K.A., Rana H., William T., Rose K., Davenport M.P., Anstey N.M., Holmes E.C. Novel RNA viruses associated with Plasmodium vivax in human malaria and Leucocytozoon parasites in avian disease. PLoS Pathog. 2019;15:e1008216. doi: 10.1371/journal.ppat.1008216. PubMed DOI PMC
Khramtsov N.V., Woods K.M., Nesterenko M.V., Dykstra C.C., Upton S.J. Virus-like, double-stranded RNAs in the parasitic protozoan Cryptosporidium parvum. Mol. Microbiol. 1997;26:289–300. doi: 10.1046/j.1365-2958.1997.5721933.x. PubMed DOI
Nibert M.L., Woods K.M., Upton S.J., Ghabrial S.A. Cryspovirus: A new genus of protozoan viruses in the family Partitiviridae. Arch. Virol. 2009;154:1959–1965. doi: 10.1007/s00705-009-0513-7. PubMed DOI
Atayde V.D., da Silva Lira Filho A., Chaparro V., Zimmermann A., Martel C., Jaramillo M., Olivier M. Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat. Microbiol. 2019;4:714–723. doi: 10.1038/s41564-018-0352-y. PubMed DOI
Parent K.N., Takagi Y., Cardone G., Olson N.H., Ericsson M., Yang M., Lee Y., Asara J.M., Fichorova R.N., Baker T.S., et al. Structure of a protozoan virus from the human genitourinary parasite Trichomonas vaginalis. MBio. 2013;4:e00056-13. doi: 10.1128/mBio.00056-13. PubMed DOI PMC
Rai A.K., Johnson P.J. Trichomonas vaginalis extracellular vesicles are internalized by host cells using proteoglycans and caveolin-dependent endocytosis. Proc. Natl. Acad. Sci. USA. 2019;116:21354–21360. doi: 10.1073/pnas.1912356116. PubMed DOI PMC
Marti M., Johnson P.J. Emerging roles for extracellular vesicles in parasitic infections. Curr. Opin. Microbiol. 2016;32:66–70. doi: 10.1016/j.mib.2016.04.008. PubMed DOI PMC
Wu Z., Wang L., Li J., Wang L., Wu Z., Sun X. Extracellular vesicle-mediated communication within host-parasite interactions. Front. Immunol. 2019;9:3066. doi: 10.3389/fimmu.2018.03066. PubMed DOI PMC
Masha S.C., Cools P., Crucitti T., Sanders E.J., Vaneechoutte M. Molecular typing of Trichomonas vaginalis isolates by actin gene sequence analysis and carriage of T. vaginalis viruses. Parasit. Vectors. 2017;10:537. doi: 10.1186/s13071-017-2496-7. PubMed DOI PMC
Da Luz Becker D., dos Santos O., Frasson A.P., de Vargas Rigo G., Macedo A.J., Tasca T. High rates of double-stranded RNA viruses and Mycoplasma hominis in Trichomonas vaginalis clinical isolates in South Brazil. Infect. Genet. Evol. 2015;34:181–187. doi: 10.1016/j.meegid.2015.07.005. PubMed DOI
Rivera W.L., Justo C.A.C., Relucio-San Diego M.A.C.V., Loyola L.M. Detection and molecular characterization of double-stranded RNA viruses in Philippine Trichomonas vaginalis isolates. J. Microbiol. Immunol. Infect. 2017;50:669–676. doi: 10.1016/j.jmii.2015.07.016. PubMed DOI
Margarita V., Marongiu A., Diaz N., Dessì D., Fiori P.L., Rappelli P. Prevalence of double-stranded RNA virus in Trichomonas vaginalis isolated in Italy and association with the symbiont Mycoplasma hominis. Parasitol Res. 2019;118:3565–3570. doi: 10.1007/s00436-019-06469-6. PubMed DOI
Fichorova R.N., Lee Y., Yamamoto H.S., Takagi Y., Hayes G.R., Goodman R.P., Chepa-Lotrea X., Buck O.R., Murray R., Kula T., et al. Endobiont viruses sensed by the human host—Beyond conventional antiparasitic therapy. PLoS ONE. 2012;7:e48418. doi: 10.1371/journal.pone.0048418. PubMed DOI PMC
Fichorova R., Fraga J., Rappelli P., Fiori P.L. Trichomonas vaginalis infection in symbiosis with Trichomonasvirus and Mycoplasma. Res. Microbiol. 2017;168:882–891. doi: 10.1016/j.resmic.2017.03.005. PubMed DOI PMC
Narayanasamy R.K., Rada P., Zdrha A., van Ranst M., Neyts J., Tachezy J. Cytidine nucleoside analog is an effective antiviral drug against Trichomonasvirus. J. Microbiol. Immunol. Infect. 2021 doi: 10.1016/j.jmii.2021.08.008. In press. PubMed DOI