Next-Generation Sequencing in Lung Cancer Patients: A Comparative Approach in NSCLC and SCLC Mutational Landscapes

. 2022 Mar 13 ; 12 (3) : . [epub] 20220313

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35330454

Background: Lung cancer remains one of the most diagnosed malignancies, being the second most diagnosed cancer, while still being the leading cause of cancer-related deaths. Late diagnosis remains a problem, alongside the high mutational burden encountered in lung cancer. Methods: We assessed the genetic profile of cancer genes in lung cancer using The Cancer Genome Atlas (TCGA) datasets for mutations and validated the results in a separate cohort of 32 lung cancer patients using tumor tissue and whole blood samples for next-generation sequencing (NGS) experiments. Another separate cohort of 32 patients was analyzed to validate some of the molecular alterations depicted in the NGS experiment. Results: In the TCGA analysis, we identified the most commonly mutated genes in each lung cancer dataset, with differences among the three histotypes analyzed. NGS analysis revealed TP53, CSF1R, PIK3CA, FLT3, ERBB4, and KDR as being the genes most frequently mutated. We validated the c.1621A>C mutation in KIT. The correlation analysis indicated negative correlation between adenocarcinoma and altered PIK3CA (r = −0.50918; p = 0.0029). TCGA survival analysis indicated that NRAS and IDH2 (LUAD), STK11 and TP53 (LUSC), and T53 (SCLC) alterations are correlated with the survival of patients. Conclusions: The study revealed differences in the mutational landscape of lung cancer histotypes.

Zobrazit více v PubMed

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Kruglyak K.M., Lin E., Ong F.S. Next-Generation Sequencing and Applications to the Diagnosis and Treatment of Lung Cancer. Adv. Exp. Med. Biol. 2016;890:123–136. PubMed

National Lung Screening Trial Research Team. Aberle D.R., Adams A.M., Berg C.D., Black W.C., Clapp J.D., Fagerstrom R.M., Gareen I.F., Gatsonis C., Marcus P.M., et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011;365:395–409. PubMed PMC

Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A., Behjati S., Biankin A.V., Bignell G.R., Bolli N., Borg A., Borresen-Dale A.L., et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. doi: 10.1038/nature12477. PubMed DOI PMC

Karnes H.E., Duncavage E.J., Bernadt C.T. Targeted next-generation sequencing using fine-needle aspirates from adenocarcinomas of the lung. Cancer Cytopathol. 2014;122:104–113. doi: 10.1002/cncy.21361. PubMed DOI

Chen Y., Shi J.-X., Pan X.-F., Feng J., Zhao H. Identification of candidate genes for lung cancer somatic mutation test kits. Genet. Mol. Biol. 2013;36:455–464. doi: 10.1590/S1415-47572013000300022. PubMed DOI PMC

Tuononen K., Maki-Nevala S., Sarhadi V.K., Wirtanen A., Ronty M., Salmenkivi K., Andrews J.M., Telaranta-Keerie A.I., Hannula S., Lagstrom S., et al. Comparison of targeted next-generation sequencing (NGS) and real-time PCR in the detection of EGFR, KRAS, and BRAF mutations on formalin-fixed, paraffin-embedded tumor material of non-small cell lung carcinoma-superiority of NGS. Genes Chromosomes Cancer. 2013;52:503–511. doi: 10.1002/gcc.22047. PubMed DOI

Buttitta F., Felicioni L., Del Grammastro M., Filice G., Di Lorito A., Malatesta S., Viola P., Centi I., D’Antuono T., Zappacosta R., et al. Effective Assessment of egfr Mutation Status in Bronchoalveolar Lavage and Pleural Fluids by Next-Generation Sequencing. Clin. Cancer Res. 2013;19:691–698. doi: 10.1158/1078-0432.CCR-12-1958. PubMed DOI

Lee C.S., Song I.H., Lee A., Kang J., Lee Y.S., Lee I.K., Song Y.S., Lee S.H. Enhancing the landscape of colorectal cancer using targeted deep sequencing. Sci. Rep. 2021;11:8154. doi: 10.1038/s41598-021-87486-3. PubMed DOI PMC

Cai H., Jing C., Chang X., Ding D., Han T., Yang J., Lu Z., Hu X., Liu Z., Wang J., et al. Mutational landscape of gastric cancer and clinical application of genomic profiling based on target next-generation sequencing. J. Transl. Med. 2019;17:189. doi: 10.1186/s12967-019-1941-0. PubMed DOI PMC

Andrikopoulou A., Chatzinikolaou S., Kyriopoulos I., Bletsa G., Kaparelou M., Liontos M., Dimopoulos M.-A., Zagouri F. The Mutational Landscape of Early-Onset Breast Cancer: A Next-Generation Sequencing Analysis. Front. Oncol. 2022;11:797505. doi: 10.3389/fonc.2021.797505. PubMed DOI PMC

International HapMap Consortium A haplotype map of the human genome. Nature. 2005;437:1299–1320. doi: 10.1038/nature04226. PubMed DOI PMC

Kido T., Sikora-Wohlfeld W., Butte A.J., Kawashima M., Kikuchi S., Kamatani N., Patwardhan A., Chen R., Sirota M., Kodama K., et al. Are minor alleles more likely to be risk alleles? BMC Med. Genom. 2018;11:3. doi: 10.1186/s12920-018-0322-5. PubMed DOI PMC

Preusser M., Berghoff A.S., Koller R., Zielinski C.C., Hainfellner J.A., Liebmann-Reindl S., Popitsch N., Geier C.B., Streubel B., Birner P. Spectrum of gene mutations detected by next generation exome sequencing in brain metastases of lung adenocarcinoma. Eur. J. Cancer. 2015;51:1803–1811. doi: 10.1016/j.ejca.2015.06.107. PubMed DOI

Takahashi T., Takahashi T., Suzuki H., Hida T., Sekido Y., Ariyoshi Y., Ueda R. The p53 gene is very frequently mutated in small-cell lung cancer with a distinct nucleotide substitution pattern. Oncogene. 1991;6:1775–1778. PubMed

D’Amico D., Carbone D., Mitsudomi T., Nau M., Fedorko J., Russell E., Johnson B., Buchhagen D., Bodner S., Phelps R. High frequency of somatically acquired p53 mutations in small-cell lung cancer cell lines and tumors. Oncogene. 1992;7:339–346. PubMed

Steels E., Paesmans M., Berghmans T., Branle F., Lemaitre F., Mascaux C., Meert A., Vallot F., Lafitte J., Sculier J. Role of p53 as a prognostic factor for survival in lung cancer: A systematic review of the literature with a meta-analysis. Eur. Respir. J. 2001;18:705–719. doi: 10.1183/09031936.01.00062201. PubMed DOI

Baumann M., Zips D., Appold S. Radiotherapy of lung cancer: Technology meets biology meets multidisciplinarity. Radiother. Oncol. 2009;91:279–281. doi: 10.1016/j.radonc.2009.05.001. PubMed DOI

Viktorsson K., De Petris L., Lewensohn R. The role of p53 in treatment responses of lung cancer. Biochem. Biophys. Res. Commun. 2005;331:868–880. doi: 10.1016/j.bbrc.2005.03.192. PubMed DOI

Grafone T., Palmisano M., Nicci C., Storti S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: Biology and treatment. Oncol. Rev. 2012;6:e8. doi: 10.4081/oncol.2012.e8. PubMed DOI PMC

Stone R.M., DeAngelo D.J., Klimek V., Galinsky I., Estey E., Nimer S.D., Grandin W., Lebwohl D., Wang Y., Cohen P., et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105:54–60. doi: 10.1182/blood-2004-03-0891. PubMed DOI

Borthakur G., Kantarjian H., Cortes J.E., Ravandi F., Zhang W., Konopleva M., Wright J.J., Faderl S., Verstovsek S., Mathews S., et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica. 2011;96:62–68. doi: 10.3324/haematol.2010.030452. PubMed DOI PMC

Stone R.M., Fischer T., Paquette R., Schiller G., Schiffer C.A., Ehninger G., Cortes J., Kantarjian H.M., DeAngelo D.J., Huntsman-Labed A., et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia. 2012;26:2061–2068. doi: 10.1038/leu.2012.115. PubMed DOI PMC

Jauhri M., Gupta V., Shokeen Y., Minhas S., Bhalla S., Aggarwal S. KDR Mutation: A High-Frequency Rare Mutation and its Correlation with other Somatic Mutations in Indian Colorectal Cancer Patients. J. Next Gener. Seq. Appl. 2017;4:148. doi: 10.4172/2469-9853.1000148. DOI

Aredo J.V., Padda S.K., Kunder C.A., Han S.S., Neal J.W., Shrager J.B., Wakelee H.A. Impact of KRAS mutation subtype and concurrent pathogenic mutations on non-small cell lung cancer outcomes. Lung Cancer. 2019;133:144–150. doi: 10.1016/j.lungcan.2019.05.015. PubMed DOI PMC

Zito Marino F., Bianco R., Accardo M., Ronchi A., Cozzolino I., Morgillo F., Rossi G., Franco R. Molecular heterogeneity in lung cancer: From mechanisms of origin to clinical implications. Int. J. Med. Sci. 2019;16:981–989. doi: 10.7150/ijms.34739. PubMed DOI PMC

Bonanno S., Zulato E., Pavan A., Attili I., Pasello G., Conte P., Indraccolo S. LKB1, and Tumor Metabolism: The Interplay of Immune and Angiogenic Microenvironment in Lung Cancer. Int. J. Mol. Sci. 2019;20:1874. doi: 10.3390/ijms20081874. PubMed DOI PMC

Hua X., Zhao W., Song L., Sampson J., Wedge D.C., Shi J., Landi M.T., Pesatori A.C., Consonni D., Caporaso N.E., et al. Genetic and epigenetic intratumor heterogeneity impacts prognosis of lung adenocarcinoma. Nat. Commun. 2020;11:2459. doi: 10.1038/s41467-020-16295-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...