An intergenerational approach to parasitoid fitness determined using clutch size

. 2022 Mar 25 ; 12 (1) : 5217. [epub] 20220325

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35338180
Odkazy

PubMed 35338180
PubMed Central PMC8956719
DOI 10.1038/s41598-022-09024-z
PII: 10.1038/s41598-022-09024-z
Knihovny.cz E-zdroje

Parasitoids, as important natural enemies, occur in high numbers and help maintain balance in natural ecosystems. Their fitness is traditionally studied as fertility based on the number of offspring in the F1 generation. Here, using gregarious parasitoids as models, we show that this traditional approach omits one important parameter: the clutch size-body size-fertility correlation among offspring. As a result of this correlation, when females adjust the number of offspring laid in a host, they determine not only the number of offspring produced but also the body size and reproductive potential of those offspring. Although parasitoid fertility has been determined several times from clutch size, here we use Anaphes flavipes to demonstrate the use of this relationship in an upgraded intergenerational approach to parasitoid fitness. We show that with a range of hosts simultaneously utilized by female parasitoids, identical fertility in the F1 generation can lead to distinctly different fertility values in the F2 generation. Even with the same number of hosts, lower fertility in the F1 generation can generate higher fertility in the F2 generation. Our approach provides an intergenerational perspective for determining individual fitness of gregarious parasitoids and new possibilities for the modelling of parasitoid population density.

Zobrazit více v PubMed

Quicke DL. Parasitic Wasps. Chapman & Hall Ltd.; 1997.

Godfray HCJ. Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press; 1994.

Mayhew, P. J. & van Alphen, J. J. M. Gregarious development in alysiine parasitoids evolved through a reduction in larval aggression. Anim. Behav.58 , 131–141 (1999). PubMed

Mayhew PJ, Hardy ICW. Nonsiblicidal behavior and the evolution of clutch size in bethylid wasps. Am. Nat. 1998;151:409–424. PubMed

Schmidt JM, Smith JJB. Correlations between body angles and substrate curvature in the parasitoid wasp Trichogramma minutum: A possible mechanism of host radius measurement. J. Exp. Biol. 1986;125:271–285.

Boivin G, Baaren J. The role of larval aggression and mobility in the transition between solitary and gregarious development in parasitoid wasps. Ecol. Lett. 2000;3:469–474.

Rosenheim JA, Wilhoit LR, Armer CA. Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia. 1993;96:439–449. PubMed

Mayhew PJ. The evolution of gregariousness in parasitoid wasps. Proc. R. Soc. Lond. B Biol. 1998;265:383–389.

Harvey PH, Partridge L. Murderous mandibles and black holes in hymenopteran wasps. Nature. 1987;326:128–129.

Pexton JJ, Mayhew PJ. Competitive interactions between parasitoid larvae and the evolution of gregarious development. Oecologia. 2004;141:179–190. PubMed

Pexton JJ, Mayhew PJ. Immobility: The key to family harmony? Trends Ecol. Evol. 2001;16:7–9. PubMed

Godfray HCJ. The evolution of clutch size in parasitic wasps. Am. Nat. 1987;129:221–233.

Laing JE, Corrigan JE. Intrinsic competition between the gregarious parasite, Cotesia glomeratus and the solitary parasite Cotesia rubecula (Hymenoptera: Braconidae) for their host Artogeia rapae (Lepidoptera: Pieridae) Entomophaga. 1987;32:493–501.

Pexton JJ, Mayhew PJ. Clutch size adjustment, information use and the evolution of gregarious development in parasitoid wasps. Behav. Ecol. Soc. 2005;58:99–110.

Reitz SR, Adler PH. Fecundity and oviposition of Eucelatoria bryani, a gregarious parasitoid of Helicoverpa zea and Heliothis virescens. Entomol. Exp. Appl. 1995;75:175–181.

Wei K, Tang YL, Wang XY, Cao LM, Yang ZQ. The developmental strategies and related profitability of an idiobiont ectoparasitoid Sclerodermus pupariae vary with host size. Ecol. Entomol. 2014;39:101–108.

van Alphen JJM, Visser ME. Superparasitism as an adaptive strategy for insect parasitoids. Ann. Rev. Entomol. 1990;35:59–79. PubMed

Mayhew PJ, Glaizot O. Integrating theory of clutch size and body size evolution for parasitoids. Oikos. 2001;92:372–376.

Samková A, Hadrava J, Skuhrovec J, Janšta P. Reproductive strategy as a major factor determining female body size and fertility of a gregarious parasitoid. J. Appl. Entomol. 2019;143:441–450.

Hardy ICW, Griffiths NT, Godfray HCJ. Clutch size in a parasitoid wasp: A manipulation experiment. J. Anim. Ecol. 1992;61:121–129.

Visser ME. The importance of being large: The relationship between size and fitness in females of the parasitoid Aphaereta minuta (Hymenoptera: Braconidae) J. Anim. Ecol. 1994;63:963–978.

Sagarra LA, Vincent C, Stewart RK. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae) Bull. Entomol. Res. 2001;91:363–367. PubMed

Bezemer TM, Mills NJ. Clutch size decisions of a gregarious parasitoid under laboratory and field conditions. Anim. Behav. 2003;66:1119–1128.

Takagi M. The reproductive strategy of the gregarious parasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae) Oecologia. 1985;68:1–6. PubMed

Jervis MA, Ferns PN, Heimpel GE. Body size and the timing of egg production in parasitoid wasps: A comparative analysis. Funct. Ecol. 2003;17:375–383.

Waage JK, Lane JA. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. J. Anim. Ecol. 1984;53:417–426.

Waage JK, Ming NS. The reproductive strategy of a parasitic wasp: I. Optimal progeny and sex allocation in Trichogramma evanescens. J. Anim. Ecol. 1984;53:401–415.

Rabinovich JE, Jorda MT, Bernstein C. Local mate competition and precise sex ratios in Telenomus fariai (Hymenoptera: Scelionidae), a parasitoid of triatomine eggs. Behav. Ecol. Sociobiol. 2000;48:308–315.

Goubault M, Mack AF, Hardy ICW. Encountering competitors reduces clutch size and increases offspring size in a parasitoid with female–female fighting. Proc. R. Soc. B Biol. 2007;274:2571–2577. PubMed PMC

Duval JF, Brodeur J, Doyon J, Boivin G. Impact of superparasitism time intervals on progeny survival and fitness of an egg parasitoid. Ecol. Entomol. 2018;43:310–317.

Mesterton-Gibbons M, Hardy ICW. The influence of contests on optimal clutch size: A game–theoretic model. Proc. R. Soc. Lond. B Biol. 2004;271:971–978. PubMed PMC

Koppik M, Thiel A, Hoffmeister TS. Adaptive decision making or differential mortality: What causes offspring emergence in a gregarious parasitoid? Entomol. Exp. Appl. 2014;150:208–216.

Heimpel GE. Host–parasitoid population dynamics. In: Hochberg ME, Ives AR, editors. Parasitoid population biology. Princeton; 2000. pp. 27–40.

Zaviezo T, Mills M. Factors influencing the evolution of clutch size in a gregarious insect parasitoid. J. Anim. Ecol. 2000;69:1047–1057.

Kazmer DJ, Luck RF. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma pretiosum. Ecology. 1995;76:412–425.

Segoli M, Rosenheim JA. The effect of body size on oviposition success of a minute parasitoid in nature. Ecol. Entomol. 2015;40:483–485.

Gao SK, Wei K, Tang ZL, Wang XY, Yang ZQ. Effect of parasitoid density on the timing of parasitism and development duration of progeny in Sclerodermus pupariae (Hymenoptera: Bethylidae) Biol. Control. 2016;97:57–62.

Anderson RC, Paschke JD. The biology and ecology of Anaphes flavipes (Hymenoptera: Mymaridae), an exotic egg parasite of the cereal leaf beetle. Ann. Entomol. Soc. Am. 1968;61:1–5.

Hoffman GD, Rao S. Oviposition site selection on oats: The effect of plant architecture, plant and leaf age, tissue toughness, and hardness on cereal leaf beetle, Oulema melanopus. Entomol. Exp. Appl. 2011;141:232–244.

Samková A, Hadrava J, Skuhrovec J, Janšta P. Host population density and presence of predators as key factors influencing the number of gregarious parasitoid Anaphes flavipes offspring. Sci. Rep. UK. 2019;9:1–7. PubMed PMC

Hardy ICW. Sex ratio and mating structure in the parasitoid Hymenoptera. Oikos. 1994;69:3–20.

Godfray HCJ. Models for clutch size and sex ratio with sibling interaction. Theor. Popul. Biol. 1986;30:215–231.

Hardy ICW. Non-binomial sex allocation and brood sex ratio variances in the parasitoid Hymenoptera. Oikos. 1992;65:143–158.

Petersen G, Hardy ICW. The importance of being larger: Parasitoid intruder–owner contests and their implications for clutch size. Anim. Behav. 1996;51:1363–1373.

Klomp H, Teerink BJ. The significance of oviposition rates in the egg parasite, Trichogramma embryophagum Htg. Arch. Neerl. Zool. 1967;17:350–375.

May RM, Hassell MP, Anderson RM, Tonkyn DW. Density dependence in host–parasitoid models. J. Anim. Ecol. 1981;50:855–865.

Hoddle MS, Van Driesche RG, Elkinton JS, Sanderson JP. Discovery and utilization of Bemisia argentifolii patches by Eretmocerus eremicus and Encarsia formosa (Beltsville strain) in greenhouses. Entomol. Exp. Appl. 1998;87:15–28.

Samková A, Raška J, Hadrava J, Skuhrovec J. Scarcity of hosts for gregarious parasitoids indicates an increase of individual offspring fertility by reducing their own fertility. bioRxiv. 2021 doi: 10.1101/2021.03.05.434037. DOI

van Dijken MJ, Waage JK. Self and conspecific superparasitism by the egg parasitoid Trichogramma evanescens. Entomol. Exp. Appl. 1987;43:183–192.

van de Vijver E, Landschoot S, van Roie M, Temmerman F, Dillen J, de Ceuleners K, Smagghe G, De Baest B, Haesaert G. Inter-and intrafield distribution of cereal leaf beetle species (Coleoptera: Chrysomelidae) in Belgian winter wheat. Environ. Entomol. 2019;48:276–283. PubMed

Samková A, Hadrava J, Skuhrovec J, Janšta P. Host specificity of the parasitic wasp Anaphes flavipes (Hymenoptera: Mymaridae) and a new defence in its hosts (Coleoptera: Chrysomelidae: Oulema spp.) Insects. 2020;11:175. PubMed PMC

Bezděk J, Baselga A. Revision of western Palaearctic species of the Oulema melanopus group, with description of two new species from Europe (Coleoptera: Chrysomelidae: Criocerinae) Acta Entomol. Mus. Nat. Pragae. 2015;55:273–304.

Anderson RC, Paschke JD. Additional observations on the biology of Anaphes flavipes (Hymenoptera: Mymaridae), with special reference to the effects of temperature and superparasitism on development. Ann. Entomol. Soc. Am. 1969;62:1316–1321.

R Core Team . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. R Core Team; 2020.

Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1–48 (2015). https://CRAN.R-project.org/package=lme4.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...