Characterization of the class IIa histone deacetylases substrate specificity
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35349187
DOI
10.1096/fj.202101663r
Knihovny.cz E-resources
- Keywords
- class IIa histone deacetylases, deacetylation, peptide library, sequence specificity, substrates,
- MeSH
- Histone Deacetylases * genetics metabolism MeSH
- Histone Deacetylase Inhibitors * pharmacology MeSH
- Peptides MeSH
- Amino Acid Sequence MeSH
- Substrate Specificity MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histone Deacetylases * MeSH
- Histone Deacetylase Inhibitors * MeSH
- Peptides MeSH
Class IIa histone deacetylases (HDACs) play critical roles in vertebrate development and physiology, yet direct evidence of their intrinsic deacetylase activity and on substrate specificity regarding the peptide sequence is still missing. In this study, we designed and synthesized a combinatorial peptide library allowing us to profile class IIa HDACs sequence specificity at positions +3 through -3 from the central lysine modified by the well-accepted trifluoroacetyl function. Our data revealed a strong preference for bulky aromatic acids directly flanking the central trifluoroacetyllysine, while all class IIa HDACs disfavor positively charged residues and proline at the +1/-1 positions. The chemical nature of amino acid residues N-terminally to the central trifluoroacetyllysine has a more profound effect on substrate recognition as compared to residues located C-terminally. These findings were validated by designing selected favored and disfavored peptide sequences, with the favored ones are accepted with catalytic efficacy of 75 000 and 525 000 M-1 s-1 for HDAC7 and HDAC5, respectively. Results reported here could help in developing class IIa HDACs inhibitors and also in the search for new natural class IIa HDACs substrates.
See more in PubMed
Toro TB, Watt TJ. Critical review of non-histone human substrates of metal-dependent lysine deacetylases. FASEB J. 2020;34(10):13140-13155.
Lahm A, Paolini C, Pallaoro M, et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci U S A. 2007;104(44):17335-17340.
Jones P, Altamura S, De Francesco R, et al. Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg Med Chem Lett. 2008;18(6):1814-1819.
Vega RB, Matsuda K, Oh J, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell. 2004;119(4):555-566.
Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol. 2004;24(19):8467-8476.
Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell. 2006;126(2):321-334.
Arnold MA, Kim Y, Czubryt MP, et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell. 2007;12(3):377-389.
Wang B, Moya N, Niessen S, et al. A hormone-dependent module regulating energy balance. Cell. 2011;145(4):596-606.
Luo L, Martin SC, Parkington J, et al. HDAC4 controls muscle homeostasis through deacetylation of myosin heavy chain, PGC-1α, and Hsc70. Cell Rep. 2019;29(3):749-763.e12.
Bradner JE, West N, Grachan ML, et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol. 2010;6(3):238-243.
Neumann H, Peak-Chew SY, Chin JW. Genetically encoding Nε-acetyllysine in recombinant proteins. Nat Chem Biol. 2008;4(4):232-234.
He S, Bauman D, Davis JS, et al. Facile synthesis of site-specifically acetylated and methylated histone proteins: reagents for evaluation of the histone code hypothesis. Proc Natl Acad Sci U S A. 2003;100(21):12033.
Schölz C, Weinert BT, Wagner SA, et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat Biotechnol. 2015;33(4):415-423.
Zhang L, Liu S, Liu N, et al. Proteomic identification and functional characterization of MYH9, Hsc70, and DNAJA1 as novel substrates of HDAC6 deacetylase activity. Protein Cell. 2015;6(1):42-54.
Joshi P, Greco TM, Guise AJ, et al. The functional interactome landscape of the human histone deacetylase family. Mol Syst Biol. 2013;9:672.
Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell. 2006;23(4):607-618.
Liu N, Xiong Y, Li S, et al. New HDAC6-mediated deacetylation sites of tubulin in the mouse brain identified by quantitative mass spectrometry. Sci Rep. 2015;5(1):16869.
Fischle W, Dequiedt F, Hendzel MJ, et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell. 2002;9(1):45-57.
Rauh D, Fischer F, Gertz M, et al. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Nat Commun. 2013;4(1):2327.
Kutil Z, Skultetyova L, Rauh D, et al. The unraveling of substrate specificity of histone deacetylase 6 domains using acetylome peptide microarrays and peptide libraries. FASEB J. 2019;33(3):4035-4045.
Zessin M, Kutil Z, Meleshin M, et al. One-atom substitution enables direct and continuous monitoring of histone deacylase activity. Biochemistry. 2019;58(48):4777-4789.
Skultetyova L, Ustinova K, Kutil Z, et al. Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci Rep. 2017;7(1):11547.
Fischle W, Emiliani S, Hendzel MJ, et al. A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. J Biol Chem. 1999;274(17):11713-11720.
Johnson LM, Kayne PS, Kahn ES, Grunstein M. Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1990;87(16):6286-6290.
Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell. 1995;80(4):583-592.
Li M, Luo J, Brooks CL, Gu W. Acetylation of p53 Inhibits Its Ubiquitination by Mdm2*. J Biol Chem. 2002;277(52):50607-50611.
Gurard-Levin ZA, Mrksich M. The activity of HDAC8 depends on local and distal sequences of its peptide substrates. Biochemistry. 2008;47(23):6242-6250.
Kutil Z, Novakova Z, Meleshin M, Mikesova J, Schutkowski M, Barinka C. Histone deacetylase 11 Is a fatty-acid deacylase. ACS Chem Biol. 2018;13(3):685-693.
Moreno-Yruela C, Galleano I, Madsen AS, Olsen CA. Histone deacetylase 11 Is an ε-N-myristoyllysine hydrolase. Cell Chem Biol. 2018;25(7):849-856.e8.
Toro TB, Swanier JS, Bezue JA, Broussard CG, Watt TJ. Lysine deacetylase substrate selectivity: a dynamic ionic interaction specific to KDAC8. Biochemistry. 2021;60(33):2524-2536.
McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000;408(6808):106-111.
Grozinger CM, Schreiber SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci U S A. 2000;97(14):7835-7840.
Liokatis S, Stützer A, Elsässer SJ, et al. Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. Nat Struct Mol Biol. 2012;19(8):819-823.
Shimada M, Niida H, Zineldeen DH, et al. Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell. 2008;132(2):221-232.
Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell. 2000;5(6):905-915.
Masch A, Reimer U, Zerweck J, Schutkowski M. Peptide microarrays for profiling of epigenetic targets. In: Zheng YG, ed. Epigenetic Technological Applications. Amsterdam: Elsevier Inc; 2015:169-186.