Male ant reproductive investment in a seasonal wet tropical forest: Consequences of future climate change

. 2022 ; 17 (3) : e0266222. [epub] 20220331

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35358265

Tropical forests sustain many ant species whose mating events often involve conspicuous flying swarms of winged gynes and males. The success of these reproductive flights depends on environmental variables and determines the maintenance of local ant diversity. However, we lack a strong understanding of the role of environmental variables in shaping the phenology of these flights. Using a combination of community-level analyses and a time-series model on male abundance, we studied male ant phenology in a seasonally wet lowland rainforest in the Panama Canal. The male flights of 161 ant species, sampled with 10 Malaise traps during 58 consecutive weeks (from August 2014 to September 2015), varied widely in number (mean = 9.8 weeks, median = 4, range = 1 to 58). Those species abundant enough for analysis (n = 97) flew mainly towards the end of the dry season and at the start of the rainy season. While litterfall, rain, temperature, and air humidity explained community composition, the time-series model estimators elucidated more complex patterns of reproductive investment across the entire year. For example, male abundance increased in weeks when maximum daily temperature increased and in wet weeks during the dry season. On the contrary, male abundance decreased in periods when rain receded (e.g., at the start of the dry season), in periods when rain fell daily (e.g., right after the beginning of the wet season), or when there was an increase in the short-term rate of litterfall (e.g., at the end of the dry season). Together, these results suggest that the BCI ant community is adapted to the dry/wet transition as the best timing of reproductive investment. We hypothesize that current climate change scenarios for tropical regions with higher average temperature, but lower rainfall, may generate phenological mismatches between reproductive flights and the adequate conditions needed for a successful start of the colony.

Zobrazit více v PubMed

Hölldobler B, Bartz SH Sociobiology of reproduction in ants. Experimental Behavioral Ecology and Sociobiology. Sinauer Associates. 1985. doi: 10.1007/BF00989563 DOI

Boomsma JJ, Baer B, Heinze J. The evolution of male traits in social insects. Annu Rev. Entomol. 2005;50:395–420. doi: 10.1146/annurev.ento.50.071803.130416 PubMed DOI

Shik JZ, Flatt D, Kay A, Kaspari M. A life history continuum in the males of a Neotropical ant assemblage: refuting the sperm vessel hypothesis. Naturwissenschaften. 2012;99: 191–197. doi: 10.1007/s00114-012-0884-6 PubMed DOI

Dunn RR, Parker CR, Geraghty M, Sanders NJ. Reproductive phenologies in a diverse temperate ant fauna. Ecol. Entomol. 2007;32: 135–142. doi: 10.1111/j.1365-2311.2006.00839.x DOI

Dean DA, Dean SR. A Survey of the Ant Fauna and Seasonal Alate Nuptial Flights at Two Locations in South-Central Texas. Southwest. Entomol. 2018;43: 639–647.

Feitosa RM, Silva RR da, Aguiar AP. Diurnal flight periodicity of a Neotropical ant assemblage (Hymenoptera, Formicidae) in the Atlantic Forest. Rev. Bras. Entomol. 2016;60: 241–247.

Helms JA. The flight ecology of ants. Myrmecol. News. 2018;26: 1–12.

Kishimoto-Yamada K, Itioka T. How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Entomol. Sci. 2015;18: 407–419. doi: 10.1111/ens.12134 DOI

Chick LD, Strickler S, Perez A, Martin, RA, Diamond SE. Urban heat islands advance the timing of reproduction in a social insect. J. Therm. Biol. 2019;80: 119–125. doi: 10.1016/j.jtherbio.2019.01.004 PubMed DOI

Stemkovski M, Pearse WD, Griffin SR, Pardee GL, Gibbs J, Griswold T, et al.. Bee phenology is predicted by climatic variation and functional Traits. Ecol. Lett. 2020;23: 1589–1598. doi: 10.1111/ele.13583 PubMed DOI

Shik JZ, Donoso DA, Kaspari M. The life history continuum hypothesis links traits of male ants with life outside the nest. Entomol. Exp. Appl. 2013;149: 99–109.

Kaspari M, Pickering J, Windsor D. The reproductive flight phenology of a neotropical ant assemblage. Ecol. Entomol. 2001;26: 245–257.

Kaspari M, Longino J, Pickering J, Windsor D. The phenology of a Neotropical ant assemblage—evidence for continuous and overlapping reproduction. Behav. Ecol. Sociobiol. 2001;50: 382–390.

Römer D, Halboth F, Bollazzi M, Roces F. Underground nest building: the effect of CO2 on digging rates, soil transport and choice of a digging site in leaf-cutting ants. Insectes Soc. 2018;65: 305–313. doi: 10.1007/s00040-018-0615-x DOI

Cornejo F, Varela A, Wright SJ. Tropical forest litter decomposition under seasonal drought: nutrient release, fungi and bacteria. Oikos 1994;70: 183–192.

Donoso DA, Johnston MK, Kaspari MTrees as templates for tropical litter arthropod diversity. Oecologia. 2010;164: 201–211. doi: 10.1007/s00442-010-1607-3 PubMed DOI

Donoso DA, Johnston MK, Clay N, Kaspari ME. Trees as templates for trophic structure of tropical litter arthropod fauna. Soil Biol. Biogeoch. 2013;61: 45–61.

Leigh EG. Ecology of Tropical Forests: The View from Barro Colorado. Oxford University Press. 1997.

Noordijk J, Morssinkhof R, Boer P, Schaffers AP, Heijerman T, Sýkora KV. How ants find each other; temporal and spatial patterns in nuptial flights. Insectes Soc. 2008;55: 266–273

Helms JA, Kaspari M. Reproduction-dispersal tradeoffs in ant queens. Insectes Soc. 2015;62: 171–181.

Wright SJ, Calderón O. Solar irradiance as the proximate cue for flowering in a tropical moist forest. Biotropica. 2018;50: 374–383. doi: 10.1111/btp.12522 DOI

Townes HA. A light-weight Malaise trap. Entomol. News. 1972;83: 239–247.

Anderson-Texeira KJ, Davies SJ, Bennett AC, Gonzales-Akre EE, Muller-Landau HC, et al.. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 2015;21: 528–549. PubMed

Barrios H, Lagos M. Cambios en la estructura de la comunidad de Cerambycidae (Coleoptera) en la Isla de Barro Colorado, Panamá. Scientia. 2016;26: 7–24.

Torres JA, Snelling RR, Canals M. Seasonal and Nocturnal Periodicities in Ant Nuptial Flights in the Tropics (Hymenoptera: Formicidae). Sociobiol. 2001;37: 601–625.

Donoso DA. Assembly mechanisms shaping tropical litter ant communities. Ecography. 2014;37: 490–499.

Ratnasingham S., Hebert PDN. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes. 2007;7: 355–364. doi: 10.1111/j.1471-8286.2007.01678.x PubMed DOI PMC

Oksanen J et al.. vegan: Community Ecology PackageR package version 2.0–2. 2011. Available from http://cran.r-project.org/

Chapman MG, Underwood AJ. Ecological patterns in multivariate assemblages: information and interpretation of negative values in ANOSIM tests. Marine Ecology Prog Series. 1999;180: 257–265.

Morellato LPC, Alberti LF, Hudson IL. Applications of circular statistics in plant phenology: A case studies approach. In Hudson IL, Keatley MR [eds.], Phenological research: Methods for environmental and climate change analysis. Springer; Netherlands, Dordrecht, The Netherlands. 2010. pp. 339–359.

Davies SJ, Ashton PS. Phenology and fecundity in 11 sympatric pioneer species of Macaranga (Euphorbiaceae) in Borneo. Am J Bot. 1999;86: 1786–1795. PubMed

Batchelet E. Circular statistics in Biology. Academic Press. 1981.

Zar JH. Biostatistical Analysis. 4th Edition. Prentice-Hall. 1999.

Agostinelli C, Lund U. R Package Circular: Circular Statistics (version 0.4–93). 2017. Available from: https://r-forge.r-project.org/projects/circular/.

Enders W. Applied Economic Time Series. New York: John Wiley & Sons. 1995.

Flo V, Bosch J, Arnan X, Primante C, Gonzalez AM, Barril-Graells H, et al.. Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability. PLoS ONE. 2018;13: e0191268. doi: 10.1371/journal.pone.0191268 PubMed DOI PMC

Fábrega J, Nakaegawa T, Pinzón R, Nakayama K, Arakawa O. Hydroclimate projections for Panama in the late 21st Century. Hydrol. Res. Lett. 2013;7: 23–29.

Imbach P, Chou SC, Lyra A, Rodrigues D, Rodriguez D, Latinovic D, et al.. Future climate change scenarios in Central America at high spatial resolution. PLoS ONE. 2018;13: e0193570. doi: 10.1371/journal.pone.0193570 PubMed DOI PMC

Bujan J, Kaspari M. Nutrition modifies critical thermal maximum of a dominant canopy ant. J. Insect Physiol. 2017;102: 1–6. doi: 10.1016/j.jinsphys.2017.08.007 PubMed DOI

Roeder KA, Bujan J, de Beurs KM, Weiser MD, Kaspari M. Thermal traits predict the winners and losers under climate change: an example from North American ant communities. Ecosphere. 2021;12: e03645.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Climate drives the long-term ant male production in a tropical community

. 2025 Jan 02 ; 15 (1) : 428. [epub] 20250102

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...