Climate drives the long-term ant male production in a tropical community

. 2025 Jan 02 ; 15 (1) : 428. [epub] 20250102

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39748115

Grantová podpora
PIGR-19-16 Escuela Politécnica Nacional
GAČR 20-31295S Czech Science Foundation
FID14-036 SENACYT
FY013 Smithsonian Institution Barcoding Opportunity
FY014 Smithsonian Institution Barcoding Opportunity
FY018 Smithsonian Institution Barcoding Opportunity
FY020 Smithsonian Institution Barcoding Opportunity

Odkazy

PubMed 39748115
PubMed Central PMC11696914
DOI 10.1038/s41598-024-84789-z
PII: 10.1038/s41598-024-84789-z
Knihovny.cz E-zdroje

Forecasting insect responses to environmental variables at local and global spatial scales remains a crucial task in Ecology. However, predicting future responses requires long-term datasets, which are rarely available for insects, especially in the tropics. From 2002 to 2017, we recorded male ant incidence of 155 ant species at ten malaise traps on the 50-ha ForestGEO plot in Barro Colorado Island. In this Panamanian tropical rainforest, traps were deployed for two weeks during the wet and dry seasons. Short-term changes in the timing of male flying activity were pronounced, and compositionally distinct assemblages flew during the wet and dry seasons. Notably, the composition of these distinct flying assemblages oscillated in consistent 4-year cycles but did not change during the 16-year study period. Across time, a Seasonal Auto-Regressive Integrated Moving Average model explained 75% of long-term variability in male ant production (i.e., the summed incidence of male species across traps), which responded negatively to monthly maximum temperature, and positively to sea surface temperature, a surrogate for El Niño Southern Oscillation (ENSO) events. Establishing these relationships allowed us to forecast ant production until 2022 when year-long local climate variables were available. Consistent with the data, the forecast indicated no significant changes in long-term temporal trends of male ant production. However, simulations of different scenarios of climate variables found that strong ENSO events and maximum temperature impacted male ant production positively and negatively, respectively. Our results highlight the dependence of ant male production on both short- and long-term temperature changes, which is critical under current global warming.

Zobrazit více v PubMed

Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE12, e0185809 (2017). PubMed PMC

McGregor, C., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol.3, 1645–1649 (2019). PubMed

Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr.93, e1553 (2022).

Lamarre, G. P. A. et al. Monitoring tropical insects in the 21st century. Adv. Ecol. Res. Academic Press62, 295–330 (2020).

Lamarre, G. P. A. et al. More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island. Panama. Biol. Lett.18, 20210519 (2022). PubMed PMC

Müller, J. et al. Weather explains the decline and rise of insect biomass over 34 years. Nature628, 349–354 (2023). PubMed

van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science368, 417–420 (2020). PubMed

Welti, E. A. R., Roeder, K. A., de Beurs, K. M., Joern, A. & Kaspari, M. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proc. Natl. Acad. Sci. USA117, 7271–7275 (2020). PubMed PMC

Staab, M. et al. Insect decline in forests depends on species’ traits and may be mitigated by management. Commun. Biol.6, 338 (2023). PubMed PMC

Murphy, S. M., Richards, L. A. & Wimp, G. M. Arthropod interactions and responses to disturbance in a changing world. Front. Ecol. Evol.8, 93 (2020).

McCleary, R., Hay, R. A., Meidinger, E. E. & McDowall, D. Applied Time Series Analysis for the Social Sciences. Sage. Beverly Hills, CA (1980).

Donoso, D. A. et al. Male ant reproductive investment in a seasonal wet tropical forest: Consequences of future climate change. PLoS ONE17, e0266222 (2022). PubMed PMC

Bowie, M. H. et al. A survey of ground beetles (Coleoptera: Carabidae) in Ahuriri Scenic Reserve, Banks Peninsula, and comparisons with a previous survey performed 30 years earlier. N. Z. J. Zool.46, 285–300 (2019).

Prudic, K. L., Zylstra, E. R., Melkonoff, N. A., Laura, R. E. & Hutchinson, R. A. Community scientists produce open data for understanding insects and climate change. Curr. Opin. Insect Sci.59, 101081 (2023). PubMed

Basset, Y. et al. Cross-continental comparisons of butterfly communitys in rainforests: Implications for biological monitoring. Insect Conserv. Divers.6, 223–233 (2013).

Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change. Glob. Change Biol.21, 528–549 (2015). PubMed

Stocker, T. F. et al. (eds.). IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. (2013).

Del Toro, I., Ribbons, R. R. & Pelini, S. L. The little things that run the world revisited: A review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. News17, 133–146 (2012).

Bujan, J. et al. Tropical ant community responses to experimental soil warming. Biol. Lett.18, 20210518 (2022). PubMed PMC

Donoso, D. A. Tropical ant communities are in long-term equilibrium. Ecol. Indic.83, 515–523 (2017).

Basset, Y. et al. The Saturniidae of Barro Colorado Island, Panama: A model taxon for studying the long-term effects of climate change?. Ecol. Evol.7, 9991–10004 (2017). PubMed PMC

Basset, Y. et al. Abundance, occurrence and time series: Long-term monitoring of social insects in a tropical rainforest. Ecol. Indic.150, 110243 (2023).

Roubik, D. W. et al. Long-term (1979–2019) dynamics of protected orchid bees in Panama. Conserv. Sci. Pract.3, e543 (2021).

Lucas, M., Forero, D. & Basset, Y. Diversity and recent population trends of assassin bugs (Hemiptera: Reduviidae) on Barro Colorado Island. Panama. Insect Conserv. Div.9, 546–558 (2016).

Donoso, D. A., Johnston, M. K. & Kaspari, M. Trees as templates for tropical litter arthropod diversity. Oecologia164, 201–211 (2010). PubMed

Cornejo, F. H., Varela, A. & Wright, S. J. Tropical forest litter decomposition under seasonal drought: nutrient release. Fungi Bacteria. Oikos70, 183–190 (1994).

Townes, H. A. A light-weight Malaise trap. Entomol. News.83, 239–247 (1972).

Barrios, H. & Lagos, M. Cambios en la estructura de la comunidad de Cerambycidae (Coleoptera) en la Isla de Barro Colorado. Panama Scientia26, 7–24 (2016).

Boudinot, B.E. Capítulo 15: Clave para las subfamilias y géneros basado en los machos, pp. 487–499. In: Fernandez, F., Guerrero, R. & Delsinne, T. (eds.) Hormigas de Colombia. Bogotá: Universidad Nacional de Colombia, Facultad de Ciencias. Colombia (2019).

Ratnasingham S. & Hebert, P. D. N. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes. 7: 355–364 (2007). PubMed PMC

Stineman, R. W. A consistently well-behaved method of interpolation. Creative Comput.6, 54–57 (1980).

Moritz, S. & Bartz-Beielstein, T. imputeTS: time series missing value imputation in R. R. J.9, 207–218 (2017).

Clarke, K.R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd Edition, PRIMER-E, Ltd., Plymouth Marine Laboratory, Plymouth (2001).

Oksanen, F. J. et al. Vegan: Community Ecology Package. R package Version 2.4–3 (2017).

Hallett, L. M. et al. codyn: An r package of community dynamics metrics. Methods Ecol. Evol.7, 1146–1151 (2016).

Collins, S. L., Micheli, F. & Hartt, L. A method to determine rates and patterns of variability in ecological communities. Oikos91, 285–293 (2000).

Matthews, W. J., Marsh-Matthews, E., Cashner, R. C. & Gelwick, F. Disturbance and trajectory of change in a stream fish community over four decades. Oecologia173, 955–969 (2013). PubMed

Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. S. T. L. A seasonal-trend decomposition. J. Off. Stat.6, 3–73 (1990).

Gibb, H. et al. Long-term responses of desert ant assemblages to climate. J. Anim. Ecol.88, 1549–1563 (2019). PubMed

Gibb, H. et al. Top-down response to spatial variation in productivity and bottom-up response to temporal variation in productivity in a long-term study of desert ants. Biol. Lett.18, 20220314 (2022). PubMed PMC

Novales A. Econometría. Second Edition. McGraw Hill/Interamericana de España SA (1993).

Box, G. & Jenkins, G. Time series analysis: Forecasting and control (Holden-Day, 1970).

Korstanje, J. The SARIMAX Model. In: Advanced Forecasting with Python. Apress, Berkeley, CA (2021).

Enders, W. Applied Econometric Time Series. Wiley & Sons, Inc. (2015).

Granger, C. W. J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica37, 424–438 (1969).

Chow, G. C. Tests of equality between sets of coefficients in two linear regressions. Econometrica28, 591–605 (1960).

IPCC. Global arming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. et al. (eds.)]. Cambridge University Press (2018).

Queiroz, A. C. M. et al. Ant diversity decreases during the dry season: A meta-analysis of the effects of seasonality on ant richness and abundance. Biotropica55, 29–39 (2023).

Kass, J. M. et al. Breakdown in seasonal dynamics of subtropical ant communities with land-cover change. Proc. R. Soc. B.290, 20231185 (2023). PubMed PMC

Tozetto, L. et al. Army ant males lose seasonality at a site on the equator. Biotropica55, 382–395 (2023).

Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett.16, 106–115 (2013). PubMed

Kaspari, M., Bujan, J., Roeder, K. A., de Beurs, K. & Weiser, M. D. Species energy and thermal performance theory predict 20-yr changes in ant community abundance and richness. Ecology100, e02888 (2020). PubMed

Kaspari, M., Weiser, M. D., Marshall, K. E., Siler, C. D. & de Beurs, K. Temperature–habitat interactions constrain seasonal activity in a continental array of pitfall traps. Ecology104, e3855 (2022). PubMed

Kaspari, M. & de Beurs, K. On the geography of activity: Productivity but not temperature constrains discovery rates by ectotherm consumers. Ecosphere10, e02536 (2019).

Kaspari, M., Joern, A. & Welti, E. A. R. How and why grasshopper community maturation rates are slowing on a North American tall grass prairie. Biol. Lett.18, 20210510 (2022). PubMed PMC

Prather, R. M. et al. Current and lagged climate affects phenology across diverse taxonomic groups. Proc. R. Soc. B290, 20222181 (2023). PubMed PMC

Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P. & Kay, A. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol.21, 1092–1102 (2015). PubMed

García-Robledo, C. et al. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. USA113, 680–685 (2016). PubMed PMC

Añino, Y. J. et al. Seasonal and annual abundance of Ephuta wasp (Hymenoptera: Mutillidae) in Panama. Rev. Biol. Trop.68, 573–579 (2020).

Araujo, E. C., Martins, L. P., Duarte, M. & Azevedo, G. G. Temporal distribution of fruit-feeding butterflies (Lepidoptera, Nymphalidae) in the eastern extreme of the Amazon region. Acta Amazonica50, 12–23 (2020).

Reymond, A., Purcell, J., Cherix, D., Guisan, A. & Pellisier, L. Functional diversity decreases with temperature in high elevation ant fauna. Ecol. Entomol.38, 364–373 (2013).

Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat.101, 233–249 (1967).

Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA105, 6668–6672 (2008). PubMed PMC

Bujan, J., Yanoviak, S. P. & Kaspari, M. Desiccation resistance in tropical insects: Causes and mechanisms underlying variability in a Panama ant community. Ecol. Evol.6, 6282–6291 (2016). PubMed PMC

Hawking, J. H. & New, T. R. Interpreting dragonfly diversity to aid in conservation assessment: lessons from the Odonata community at Middle Creek, north-eastern Victoria Australia. J. Insect Conserv.6, 171–178 (2002).

Drummond, F.A., Fanning, P. & Collins, J. Have native insect pests associated with a native crop in Maine declined over the past three to five decades? Agric. For. Entomol. 1–10 (2024).

Zina, V. et al. Land use system, invasive species and shrub diversity of the riparian ecological infrastructure determine the specific and functional richness of ant communities in Mediterranean river valleys. Ecol. Indic.145, 109613 (2022).

Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: Insect responses to extreme high temperatures. Annu. Rev. Entomol.66, 163–184 (2021). PubMed

Chen, I.-C. et al. Elevation increases in moth communitys over 42 years on a tropical mountain. Proc. Natl. Acad. Sci. USA106, 1479–1483 (2009). PubMed PMC

Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. USA111, 5610–5615 (2014). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...