The Saturniidae of Barro Colorado Island, Panama: A model taxon for studying the long-term effects of climate change?
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
Grant support
669609
European Research Council - International
PubMed
29238531
PubMed Central
PMC5723595
DOI
10.1002/ece3.3515
PII: ECE33515
Knihovny.cz E-resources
- Keywords
- DNA barcoding, climatic anomalies, functional groups, monitoring, population dynamics, rainforest, species traits,
- Publication type
- Journal Article MeSH
We have little knowledge of the response of invertebrate assemblages to climate change in tropical ecosystems, and few studies have compiled long-term data on invertebrates from tropical rainforests. We provide an updated list of the 72 species of Saturniidae moths collected on Barro Colorado Island (BCI), Panama, during the period 1958-2016. This list will serve as baseline data for assessing long-term changes of saturniids on BCI in the future, as 81% of the species can be identified by their unique DNA Barcode Index Number, including four cryptic species not yet formally described. A local species pool of 60 + species breeding on BCI appears plausible, but more cryptic species may be discovered in the future. We use monitoring data obtained by light trapping to analyze recent population trends on BCI for saturniid species that were relatively common during 2009-2016, a period representing >30 saturniid generations. The abundances of 11 species, of 14 tested, could be fitted to significant time-series models. While the direction of change in abundance was uncertain for most species, two species showed a significant increase over time, and forecast models also suggested continuing increases for most species during 2017-2018, as compared to the 2009 base year. Peaks in saturniid abundance were most conspicuous during El Niño and La Niña years. In addition to a species-specific approach, we propose a reproducible functional classification based on five functional traits to analyze the responses of species sharing similar functional attributes in a fluctuating climate. Our results suggest that the abundances of larger body-size species with good dispersal abilities may increase concomitantly with rising air temperature in the future, because short-lived adults may allocate less time to increasing body temperature for flight, leaving more time available for searching for mating partners or suitable oviposition sites.
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute of Entomology Biology Centre Czech Academy of Science Ceske Budejovice Czech Republic
Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
Maestria de Entomologia Universidad de Panamá Panama City Panama
National Museum of Natural History Smithsonian Institution Washington DC USA
See more in PubMed
Agosta, S. J. , Hulshof, C. M. , & Staats, E. G. (2017). Organismal responses to habitat change: Herbivore performance, climate, and leaf traits in regenerating tropical dry forests. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.12647 PubMed DOI
Aiello, A. . (2017) Aiello Insect Rearing. Retrieved from http://stri.si.edu/sites/aiello/
Anderson‐Teixeira, K. J. , Davies, S. J. , Bennett, A. C. , Gonzalez‐Akre, E. B. , Muller‐Landau, H. C. , … Zimmerman, J. (2014). CTFS‐ForestGEO: A worldwide network monitoring forests in an era of global change. Global Change Biology, 21, 528–549. PubMed
Basset, Y. , Barrios, H. , Segar, S. , Srygley, R. B. , Aiello, A. , Warren, A. D , … Ramirez, J. A. (2015). The butterflies of Barro Colorado Island, Panama: Local extinction since the 1930s. PLoS ONE, 10, e0136623 https://doi.org/10.1371/journal.pone.0136623 PubMed DOI PMC
Basset, Y. , Eastwood, R. , Sam, L. , Lohman, D. J. , Novotny, V. , Treuer, T. , … Osorio‐Arenas, M. A (2013). Cross‐continental comparisons of butterfly assemblages in rainforests: Implications for biological monitoring. Insect Conservation and Diversity, 6, 223–233.
Beck, J. , & Linsenmaier, K. E. (2006). Feasibility of light‐trapping in community research on moths: Attraction radius of light, completeness of samples, nightly flight times and seasonality of Southeast‐Asian hawkmoths (Lepidoptera: Sphingidae). Journal of Research on the Lepidoptera, 39, 18–37.
Bernays, E. A. , & Janzen, D. H. (1988). Saturniid and sphingid caterpillars: Two ways to eat leaves. Ecology, 69, 1153–1160.
Blest, A. D. (1960a). A study of the biology of saturniid moths in the Canal Zone biological area. Smithsonian Report for, 1959, 447–464.
Blest, A. D. (1960b). The evolution, ontogeny and quantitative control of the settling movements of some New World saturniid moths, with some comments on distance communication by honey‐bees. Behaviour, 16, 188–253.
Box, G. E. P. , & Jenkins, G. M. (1976). Time series analysis: Forecasting and control. San Francisco, CA: Holden‐day.
CAB International . (1998) Crop protection compendium. Module 1. Wallingford, UK: CAB Internationa; l.
Caldas, A. (1992). Mortality of Anaea ryphea (Lepidoptera: Nymphalidae) immatures in Panama. Journal of Research on the Lepidoptera, 31, 195–204.
Colwell, R. K. . (2009) EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 8.20. User's Guide and application. University of Connecticut, Storrs. Retrieved from http://purl.oclc.org/estimates
Condit, R. . (1998) Tropical Forest Census Plots. Berlin, Germany and Georgetown, Texas: Springer‐Verlag and R. G. Landes Company.
Condit, R. S. , Hubbell, S. P. , & Foster, R. B. (1996). Changes in tree species abundance in a neotropical forest: Impact of climate change. Journal of Tropical Ecology, 12, 231–256.
Deutsch, C. A. , Tewksbury, J. J. , Huey, R. B. , Sheldon, K. S. , Ghalambor, C. K. , Haak, D. C. , & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105, 6668–6672. PubMed PMC
Diamond, S. E. , Frame, A. M. , Martin, R. A. , & Buckley, L. B. (2011). Species’ traits predict phenological responses to climate change in butterflies. Ecology, 92, 1005–1012. PubMed
Dyar, H. G. (1914). Report on the Lepidoptera of the Smithsonian Biological Survey of the Panama Canal Zone. Proceedings of the United States National Museum, 47, 139–350.
Dyer, L. A. , Singer, M. S. , Lill, J. T. , Stireman, J. O. , Gentry, G. L. , Marquis, R.J. , … Coley, P. D. (2007). Host specificity of Lepidoptera in tropical and temperate forests. Nature, 448, 696–699. PubMed
Grøtan, V. , Lande, R. , Engen, S. , Saether, B.‐E. , & DeVries, P. J. (2012). Seasonal cycles of species diversity and similarity in a tropical butterfly community. Journal of Animal Ecology, 81, 714–723. PubMed
Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.
Hebert, P. D. N. , de Waard, J. R. , & Landry, J.‐F. (2010). DNA barcodes for 1/1000 of the animal kingdom. Biology Letters, 6, 359–362. PubMed PMC
Hood, W. G. , & Tschinkel, W. R. (1990). Desiccation resistance in arboreal and terrestrial ants. Physiological Entomology, 15, 23–35.
Hyams, D. G. . (2011) CurveExpert Professional. A Comprehensive Data Analysis Software System for Windows, Mac, and Linux. Version 1.2.2. Retrieved from www.curveexpert.net
IPCC . (2012) Summary for Policymakers In Field C. B., Barros V., Stocker T. F., Qin D., Dokken D. J., Ebi K. L., Mastrandrea M. D., Mach K. J., Plattner G.‐K., Allen S. K., Tignor M. & Midgley P. M. (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (pp. 1–19). Cambridge, UK: Cambridge University Press.
Ives, W. G. H. (1973). Heat units and outbreaks of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). The Canadian Entomologist, 105, 529–543.
Janzen, D. H. (1984a). Natural history of Hylesia lineata (Saturniidae: Hemileucinae) in Santa Rosa National Park, Costa Rica. Journal of the Kansas Entomological Society, 57, 490–514.
Janzen, D. H. (1984b). Two ways to be a tropical big moth: Santa Rosa saturniids and sphingids. Oxford Surveys in Evolutionary Biology, 1, 85–140.
Janzen, D. H. , & Hallwachs, W. . (2016) Dynamic database for an inventory of the macrocaterpillar fauna, and its food plants and parasitoids, of Area de Conservacion Guanacaste (ACG), northwestern Costa Rica. Retrieved from http://janzen.sas.upenn.edu
Janzen, D. H. , Hallwachs, W. , Harvey, D. J. , Darrow, K. , Rougerie, R. , Hajibabaei, M. , … Hebert, P. D. N. (2012). What happens to the traditional taxonomy when a well‐known tropical saturniid moth fauna is DNA barcoded? Invertebrate Systematics, 26, 478–505.
Kakati, L. N. , & Chutia, B. C. (2009). Diversity and ecology of wild sericigenous insects in Nagaland, India. Tropical Ecology, 50, 137–146.
Kaspari, M. , Clay, N. A. , Lucas, J. , Yanoviak, S. P. , & Kay, A. (2014). Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Global Change Biology, https://doi.org/10.1111/gcb.12750 PubMed DOI
Lamarre, G. P. , Mendoza, I. , Fine, P. V. , & Baraloto, C. (2014). Leaf synchrony and insect herbivory among tropical tree habitat specialists. Plant Ecology, 215, 209–220.
Lamarre, G. P. A. , Mendoza, I. , Rougerie, R. , Decaëns, T. , Hérault, B. , & Bénéluz, F. (2015). Stay out (almost) all night: Contrasting responses in flight activity among tropical moth assemblages. Neotropical Entomology, 44, 109–115. PubMed
Lamas, G. (1989). Lista preliminar de los Saturniidae, Oxytenidae, Uraniidae y Sematurudae (Lepidoptera) de la Zona Reservada de Tambopata, Madre de Dios, Perú. Revista peruana de Entomologia, 31, 57–60.
Leidner, A. K. , Haddad, N. M. , & Lovejoy, T. E. (2010). Does tropical forest fragmentation increase long‐term variability of butterfly communities? PLoS ONE, 5, e9534. PubMed PMC
Lemaire, C. . (1978) Les Attacidae Americains In Lemaire C. (Ed.), The Attacidae of America (=Saturniidae) Attacinae. Neuilly‐sur‐Seine, France: Editions C. Lemaire, 238 pp.
Lemaire, C. . (1980) Les Attacidae Americains In Lemaire C. (Ed.), The Attacidae of America (=Saturniidae). Arsenurinae. Neuilly‐sur‐Seine, France: Editions C. Lemaire, 199 pp.
Lemaire, C. . (1988) Les Saturniidae Americains. The Saturniidae of America. Los Saturniidae Americanos (=Attacidae). Ceratocampinae. San José: Museo Nacional de Costa Rica, 480 pp.
Lemaire, C. . (2002) Saturniidae of America: Hemileucinae. Keltern, Germany: Antiquariat Geock & Evers, 1388 pp.
Lucas, M. , Forero, D. , & Basset, Y. (2016). Diversity and recent population trends of assassin bugs (Hemiptera: Reduviidae) on Barro Colorado Island, Panama. Insect Conservation and Diversity, 9, 546–558.
Lyon, B. (2004). The strength of El Niño and the spatial extent of tropical drought. Geophysical Research Letters, 31, L21204.
Magurran A. E., & McGill B. J. (Eds.) (2011). Biological Diversity: Frontiers in Measurement and Assessment. Oxford: Oxford University Press.
Maire, E. , Grenouillet, G. , Brosse, S. , & Villéger, S. (2015). How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography, 24, 728–740.
Muirhead‐Thomson, R. C. (1991). Trap Responses of Flying Insects. London, UK: Academic Press.
Nair, K. S. S. . (2007) Tropical Insect Forest Pests. Ecology, Impact, and Management. Cambridge: Cambridge University Press.
National Oceanographic and Atmospheric Administration . (2016) Retrieved from http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
van Nieukerken, E. J. , Kaila, L. , Kitching, I. J. , Kristensen, N. P. , Lees, D. J. , Minet, J. , … Wahlberg, N. (2011). Order Lepidoptera Linnaeus, 1758. Zootaxa, 3148, 212–221.
Oksanen, J. , Blanchet, F. G. , & Kindt, R. . Legendre, P. , O'Hara, R. B. , Simpson, G. L. , … Wagner, H. (2011) vegan: Community Ecology Package. R package version 1.17‐6. Vienna: R Foundation for Statistical Computing. Retrieved from http://CRAN.R-project.org/package=vegan
Pannekoek, J. , & van Strien, A. . (2005) TRIM 3 Manual (TRends & Indices for Monitoring data). Statistics Netherlands, Voorburg, Netherlands. Retrieved from http://www.cbs.nl/en-GB/menu/themas/natuur-milieu/methoden/trim/default.htm?Languageswitch=on
Parr, C. L. , Dunn, R. R. , Sanders, N. J. , Weiser, M. D. , Photakis, M. , Bishop, M. , … Chick, L. (2017). GlobalAnts: A new database on the geography of ant traits (Hymenoptera: Formicidae) . Insect Conservation and Diversity, 10, 5–20.
Pau, S. , Wolkovich, E. M. , Cook, B. I. , Davies, T. J. , Kraft, N. J. B. , Bolmgren, K. , … Cleland, E. E. (2011). Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology, 17, 3633–3643.
Polar, P. , Cock, M. J. W. , Frederickson, C. , Hosein, M. , & Krauss, U. (2010). Invasions of Hylesia metabus (Lepidoptera: Saturniidae, Hemileucinae) into Trinidad, West Indies. Living World Journal of the Trinidad and Tobago Field Naturalists’ Club, 2010, 1–10.
Ratnasingham, S. , & Hebert, P. D. N. (2013). A DNA‐Based Registry for All Animal Species: The Barcode Index Number (BIN) System. PLoS ONE, 8, e66213. PubMed PMC
Regier, J. C. , Grant, M. C. , Mitter, C. , Cook, C. P. , Peigler, R. S. , & Rougerie, R. (2008). Phylogenetic relationships of wild silkmoths (Lepidoptera: Saturniidae) inferred from four protein‐coding nuclear genes. Systematic Entomology, 33, 219–228.
Rougerie, R. . (2008) Lepidoptera Barcode of Life: Saturniidae. Retrieved from http://www.lepbarcoding.org/saturnidae/species_checklists.php
Scoble, M. J. (1995). The Lepidoptera. Form, Function and Diversity: Oxford University Press, Oxford, U. K.
Sekar, S. (2012). A meta‐analysis of the traits affecting dispersal ability in butterflies: Can wingspan be used as a proxy? Journal of Animal Ecology, 81, 174–184. PubMed
Singer, M. C. , & Parmesan, C. (2010). Phenological asynchrony between herbivorous insects and their hosts: Signal of climate change or pre‐existing adaptive strategy? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 3161–3176. PubMed PMC
Slade, E. M. , Merckx, T. , Riutta, T. , Bebber, D. P. , Redhead, D. , Riordan, P. , & Macdonald, D. W. (2013). Life‐history traits and landscape characteristics predict macro‐moth responses to forest fragmentation. Ecology, 94, 1519–1530. PubMed
Srygley, R. B. , Dudley, R. , Oliveira, E. G. , & Riveros, A. J. (2014). El Niño, host plant growth, and migratory butterfly abundance in a changing climate. Biotropica, 46, 90–97.
Stapley, J. , Garcia, M. , & Andrews, R. M. (2015). Long‐term data reveal a population decline of the tropical lizard Anolis apletophallus, and a negative affect of El Nino years on population growth rate. PLoS ONE, 10, e0115450. PubMed PMC
Stocker, T. , Qin, D. , & Platner, G. . (2014) Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for PolicyMakers. Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press.
STRI . (2017) STRI synoptic dry collection. Retrieved from http://symbiota.org/neotrop/entomology/index.php
Symbiota . (2017) Neotropical Arthropod Portal. Retrieved from http://symbiota.org/neotrop/entomology/collections/
Thomas, J. A. , Telfer, M. G. , Roy, D. B. , Preston, C. D. , Greenwood, J. J. D. , Asher, J. , … Lawton, J. H. (2004). Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science, 303, 1879–1881. PubMed
USNM . (2017). Retrieved from http://collections.mnh.si.edu/search/ento/#new-search
Valtonen, A. , Molleman, F. , Chapman, C. A. , Carey, J. R. , Ayres, M. P. , & Roininen, H. (2013). Tropical phenology: Bi‐annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere, 4, 1–28.
Van Bael, S. , Aiello, A. , Valderrama, A. , Medianero, E. , Samaniego, M. , & Wright, J. S. (2004). General herbivore outbreak following an El Niño‐related drought in a lowland Panamanian forest. Journal of Tropical Ecology, 20, 625–633.
Van Huis, A. (2003). Insects as food in sub‐saharan Africa. International Journal of Tropical Insect Science, 23, 163–185.
Wilson, J. J. (2012). DNA barcodes for insects In Kress W. J., & Erickson D. L. (Eds.), DNA Barcodes: Methods and Protocols (pp. 17–46). New York: Springer.
Windsor, D. M. (1990). Climate and Moisture Variability in a Tropical Forest: Long‐term Records from Barro Colorado Island. Panama: Smithsonian Institution Press, Washington DC.
Wirtz, R. A. (1984). Allergic and toxic reactions to non‐stinging arthropods. Annual Review of Entomology, 29, 47–69. PubMed
Wolda, H. (1992). Trends in abundance of tropical forest insects. Oecologia, 89, 47–52. PubMed
Wright, S. J. , Carrasco, C. , Calderón, O. , & Paton, S. R. (1999). The El Niño Southern Oscillation, variable fruit production, and famine in a tropical forest. Ecology, 80, 1632–1647.
Xing, S. , Bonebrake, T. C. , Tang, C. C. , Pickett, E. J. , Cheng, W. , Greenspan, S. E. , … Scheffers, B. R. (2016). Cooler habitats support darker and bigger butterflies in a tropical forest. Ecology and Evolution, https://doi.org/10.1002/ece3.2464 PubMed DOI PMC
Climate drives the long-term ant male production in a tropical community