More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama

. 2022 Apr ; 18 (4) : 20210519. [epub] 20220406

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35382585

Understanding the causes and consequences of insect declines has become an important goal in ecology, particularly in the tropics, where most terrestrial diversity exists. Over the past 12 years, the ForestGEO Arthropod Initiative has systematically monitored multiple insect groups on Barro Colorado Island (BCI), Panama, providing baseline data for assessing long-term population trends. Here, we estimate the rates of change in abundance among 96 tiger moth species on BCI. Population trends of most species were stable (n = 20) or increasing (n = 62), with few (n = 14) declining species. Our analysis of morphological and climatic sensitivity traits associated with population trends shows that species-specific responses to climate were most strongly linked with trends. Specifically, tiger moth species that are more abundant in warmer and wetter years are more likely to show population increases. Our study contrasts with recent findings indicating insect decline in tropical and temperate regions. These results highlight the significant role of biotic responses to climate in determining long-term population trends and suggest that future climate changes are likely to impact tropical insect communities.

Zobrazit více v PubMed

Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. 2014. Defaunation in the Anthropocene. Science 345, 401-406. (10.1126/science.1251817) PubMed DOI

Sánchez-Bayo F, Wyckhuys KAG. 2019. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8-27. (10.1016/j.biocon.2019.01.020) DOI

Wagner DL, Fox R, Salcido DM, Dyer LA. 2021. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117. (10.1073/pnas.2002549117) PubMed DOI PMC

Basset Y, Lamarre GPA. 2019. Toward a world that values insects. Science 364, 1230-1231. (10.1126/science.aaw7071) PubMed DOI

Van Bael S, Aiello A, Valderrama A, Medianero E, Samaniego M, Wright JS. 2004. General herbivore outbreak following an El Niño-related drought in a lowland Panamanian forest. J. Trop. Ecol. 20, 625-633. (10.1017/S0266467404001725) DOI

Battisti A, Stastny M, Netherer S, Robinet C, Schopf A, Roques A, Larsson S. 2005. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15, 2084-2096. (10.1890/04-1903) DOI

Sekar S. 2012. A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J. Anim. Ecol. 81, 174-184. (10.1111/j.1365-2656.2011.01909.x) PubMed DOI

Detto M, Wright JS, Calderon O, Muller-Landau H. 2018. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation. Nature Comm. 9, 913. (10.1038/s41467-018-03306-9) PubMed DOI PMC

Eggleton P. 2020. The state of the World's insects. Annu. Rev. Environ. Resour. 45, 61-82. (10.1146/annurev-environ-012420-050035) DOI

Schleuning M, et al. 2020. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. 35, 319-328. (10.1016/j.tree.2019.12.010) PubMed DOI

Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668-6672. (10.1073/pnas.0709472105) PubMed DOI PMC

Kaspari M, Clay NA, Lucas J, Yanoviak SP, Kay A. 2015. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Chang. Biol. 21, 1092-1102. (10.1111/gcb.12750) PubMed DOI

García-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ. 2016. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl Acad. Sci. USA 113, 680-685. (10.1073/pnas.1507681113) PubMed DOI PMC

Pincebourde S, Casas J. 2019. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 588-596. (10.1073/pnas.1815828116) PubMed DOI PMC

Zenker M, Wahlberg N, Brehm G, Teston JA, Przybylowicz L, Pie MR, Freitas AV. 2017. Systematics and origin of moths in the subfamily Arctiinae (Lepidoptera, Erebidae) in the Neotropical región. Zool. Scripta 46, 348-362. (10.1111/zsc.12202) DOI

Chialvo SCH, Holland JD, Anderson TJ, Breinholt JW, Kawahara ZX, Liu S, Zaspel JM. 2018. A phylogenomic analysis of lichen-feeding tiger moths uncovers evolutionary origins of host chemical sequestration. Mol. Phylogenetics Evol. 121, 23-34. (10.1016/j.ympev.2017.12.015) PubMed DOI PMC

Gawne R, Nijhout HF. 2020. The Arctiid Archetype: a new Lepidopteran Groundplan. Front. Ecol. Evol. 8, 175. (10.3389/fevo.2020.00175) DOI

Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637-669. (10.1146/annurev.ecolsys.37.091305.110100) DOI

Lavorel S, et al. 2013. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J. Veg. Sci. 24, 942-948. (10.1111/jvs.12083) DOI

Kissling WD, et al. 2018. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531-1540. (10.1038/s41559-018-0667-3) PubMed DOI

Slade EM, Merckx T, Riutta T, Bebber DP, Redhead D, Riordan P, Macdonald DW. 2013. Life-history traits and landscape characteristics predict macro-moth responses to forest fragmentation. Ecology 94, 1519-1530. (10.1890/12-1366.1) PubMed DOI

Coulthard E, Norrey J, Shortall C, Harris EW. 2019. Ecological traits predict population changes in moths. Biol. Conserv. 233, 213-219. (10.1016/j.biocon.2019.02.023) DOI

Heidrich L, Friess N, Fiedler K, Brandle M, Hausmann A, Brandl R, Zeuss D. 2018. The dark side of Lepidoptera: colour lightness of geometrid moths decreases with increasing latitude. Glob. Ecol. Biogeogr. 8, 1-10. (10.1111/geb.12703) DOI

Clusella-Trullas S, Nielsen M. 2020. The evolution of insect body coloration under changing climates. Curr. Opin. Insect. Sci. 41, 25-32. (10.1016/j.cois.2020.05.007) PubMed DOI

Anderson-Teixeira KJ, et al. 2015. CTFS ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528-549. (10.1111/gcb.12712) PubMed DOI

Lucas M, Forero D, Basset Y. 2016. Diversity and recent population trends of assassin bugs (Hemiptera: Reduviidae) on Barro Colorado Island, Panama. Insect Conserv. Divers. 9, 546-558. (10.1111/icad.12191) DOI

Hackforth CN, et al. . In preparation. Functional classification of Neotropical tiger moths (Erebidae-Arctiinae) provides insight on vulnerability to climate change. Manuscript in preparation for Funct. Ecol.

Basset Y, et al. 2017. The Saturniidae of Barro Colorado Island, Panama: a model taxon for studying the long-term effects of climate change? Ecol. Evol. 7, 1-14. (10.1002/ece3.3515) PubMed DOI PMC

Lamarre GPA, et al. 2022. Data from: More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama. FigShare. See https://smithsonian.figshare.com/articles/dataset/More_winners_than_losers_over_12_years_of_monitoring_tiger_moths_Erebidae_Arctiinae_on_Barro_Colorado_Island_Panama/16850218. PubMed PMC

Hartig F. 2019. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2.4.

Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp, S, Van Willigen B, Maintainer R. 2017. Package ‘nlme’. Linear and nonlinear mixed effects models, version, 3(1).

Kembel S, Cowan P, Helmus M, Cornwell W, Morlon H, Ackerly D, Blomberg S, Webb C. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463-1464. (10.1093/bioinformatics/btq166) PubMed DOI

Salcido DM, Forister ML, Garcia Lopez H, Dyer LA. 2020. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422. (10.1038/s41598-019-57226-9) PubMed DOI PMC

Janzen DH, Hallwachs W. 2021. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let's be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117. (10.1073/pnas.2002546117) PubMed DOI PMC

Forister ML, et al. 2021. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 371, 1042-1045. (10.1126/science.abe5585) PubMed DOI

Fox J, et al. 2012. Package ‘car’, p. 16. Vienna, Austria: R Foundation for Statistical Computing.

Fox R, et al. . 2021. The state of Britain's larger moths 2021. Wareham, UK: Butterfly Conservation, Rothamsted Research and UK Centre for Ecology & Hydrology. See https://butterfly-conservation.org/sites/default/files/2021-03/StateofMothsReport2021.pdf.

Hayes MP, Hitchcock GE, Knock RI, Lucas CBH, Tuerner EC. 2019. Temperature and territoriality in the Duke of Burgundy butterfly, Hamearis lucina. J. Ins. Cons. 23, 739-750. (10.1007/s10841-019-00166-6) DOI

Rebaudo F, Rabhi VB. 2018. Modeling temperature-dependent development rate and phenology in insects: review of major developments, challenges, and future directions. Entom. Exp. Appl. 166, 607-617. (10.1111/eea.12693) DOI

Iltis C, Louapre P, Pecharova K, Thiery D, Zito S, Bois B, Moreau J. 2019. Are life-history traits equally affected by global warming? A case study combining a multi-trait approach with fine-grain climate modeling. J. Ins. Physiol. 117, 103916. (10.1016/j.jinsphys.2019.103916) PubMed DOI

IPCC. 2021. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V., et al.). Cambridge, UK: Cambridge University Press. See https://www.ipcc.ch/report/ar6/wg1/#FullReport.

Stocker T, et al. . 2014. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. See https://www.ipcc.ch/report/ar5/wg1/.

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5896928

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...