More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35382585
PubMed Central
PMC8984363
DOI
10.1098/rsbl.2021.0519
Knihovny.cz E-zdroje
- Klíčová slova
- Panama, climate change, functional traits, population trend, rainforest,
- MeSH
- ekologie MeSH
- klimatické změny MeSH
- můry * fyziologie MeSH
- stromy MeSH
- tropické klima * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Colorado MeSH
Understanding the causes and consequences of insect declines has become an important goal in ecology, particularly in the tropics, where most terrestrial diversity exists. Over the past 12 years, the ForestGEO Arthropod Initiative has systematically monitored multiple insect groups on Barro Colorado Island (BCI), Panama, providing baseline data for assessing long-term population trends. Here, we estimate the rates of change in abundance among 96 tiger moth species on BCI. Population trends of most species were stable (n = 20) or increasing (n = 62), with few (n = 14) declining species. Our analysis of morphological and climatic sensitivity traits associated with population trends shows that species-specific responses to climate were most strongly linked with trends. Specifically, tiger moth species that are more abundant in warmer and wetter years are more likely to show population increases. Our study contrasts with recent findings indicating insect decline in tropical and temperate regions. These results highlight the significant role of biotic responses to climate in determining long-term population trends and suggest that future climate changes are likely to impact tropical insect communities.
Agriculture and Environment Department Harper Adams University Newport Shropshire TF10 8NB UK
Department of Geography University College London Gower Street London WC1E 6BT UK
Department of Life and Earth Sciences Perimeter College Georgia State University Atlanta USA
Faculty of Sciences University of South Bohemia Ceske Budejovice Czech Republic
Maestria de Entomologia Universidad de Panamá Apartado 3366 Panamá 4 Panamá
Zobrazit více v PubMed
Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. 2014. Defaunation in the Anthropocene. Science 345, 401-406. (10.1126/science.1251817) PubMed DOI
Sánchez-Bayo F, Wyckhuys KAG. 2019. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8-27. (10.1016/j.biocon.2019.01.020) DOI
Wagner DL, Fox R, Salcido DM, Dyer LA. 2021. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117. (10.1073/pnas.2002549117) PubMed DOI PMC
Basset Y, Lamarre GPA. 2019. Toward a world that values insects. Science 364, 1230-1231. (10.1126/science.aaw7071) PubMed DOI
Van Bael S, Aiello A, Valderrama A, Medianero E, Samaniego M, Wright JS. 2004. General herbivore outbreak following an El Niño-related drought in a lowland Panamanian forest. J. Trop. Ecol. 20, 625-633. (10.1017/S0266467404001725) DOI
Battisti A, Stastny M, Netherer S, Robinet C, Schopf A, Roques A, Larsson S. 2005. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15, 2084-2096. (10.1890/04-1903) DOI
Sekar S. 2012. A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J. Anim. Ecol. 81, 174-184. (10.1111/j.1365-2656.2011.01909.x) PubMed DOI
Detto M, Wright JS, Calderon O, Muller-Landau H. 2018. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation. Nature Comm. 9, 913. (10.1038/s41467-018-03306-9) PubMed DOI PMC
Eggleton P. 2020. The state of the World's insects. Annu. Rev. Environ. Resour. 45, 61-82. (10.1146/annurev-environ-012420-050035) DOI
Schleuning M, et al. 2020. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. 35, 319-328. (10.1016/j.tree.2019.12.010) PubMed DOI
Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668-6672. (10.1073/pnas.0709472105) PubMed DOI PMC
Kaspari M, Clay NA, Lucas J, Yanoviak SP, Kay A. 2015. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Chang. Biol. 21, 1092-1102. (10.1111/gcb.12750) PubMed DOI
García-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ. 2016. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl Acad. Sci. USA 113, 680-685. (10.1073/pnas.1507681113) PubMed DOI PMC
Pincebourde S, Casas J. 2019. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 588-596. (10.1073/pnas.1815828116) PubMed DOI PMC
Zenker M, Wahlberg N, Brehm G, Teston JA, Przybylowicz L, Pie MR, Freitas AV. 2017. Systematics and origin of moths in the subfamily Arctiinae (Lepidoptera, Erebidae) in the Neotropical región. Zool. Scripta 46, 348-362. (10.1111/zsc.12202) DOI
Chialvo SCH, Holland JD, Anderson TJ, Breinholt JW, Kawahara ZX, Liu S, Zaspel JM. 2018. A phylogenomic analysis of lichen-feeding tiger moths uncovers evolutionary origins of host chemical sequestration. Mol. Phylogenetics Evol. 121, 23-34. (10.1016/j.ympev.2017.12.015) PubMed DOI PMC
Gawne R, Nijhout HF. 2020. The Arctiid Archetype: a new Lepidopteran Groundplan. Front. Ecol. Evol. 8, 175. (10.3389/fevo.2020.00175) DOI
Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637-669. (10.1146/annurev.ecolsys.37.091305.110100) DOI
Lavorel S, et al. 2013. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J. Veg. Sci. 24, 942-948. (10.1111/jvs.12083) DOI
Kissling WD, et al. 2018. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531-1540. (10.1038/s41559-018-0667-3) PubMed DOI
Slade EM, Merckx T, Riutta T, Bebber DP, Redhead D, Riordan P, Macdonald DW. 2013. Life-history traits and landscape characteristics predict macro-moth responses to forest fragmentation. Ecology 94, 1519-1530. (10.1890/12-1366.1) PubMed DOI
Coulthard E, Norrey J, Shortall C, Harris EW. 2019. Ecological traits predict population changes in moths. Biol. Conserv. 233, 213-219. (10.1016/j.biocon.2019.02.023) DOI
Heidrich L, Friess N, Fiedler K, Brandle M, Hausmann A, Brandl R, Zeuss D. 2018. The dark side of Lepidoptera: colour lightness of geometrid moths decreases with increasing latitude. Glob. Ecol. Biogeogr. 8, 1-10. (10.1111/geb.12703) DOI
Clusella-Trullas S, Nielsen M. 2020. The evolution of insect body coloration under changing climates. Curr. Opin. Insect. Sci. 41, 25-32. (10.1016/j.cois.2020.05.007) PubMed DOI
Anderson-Teixeira KJ, et al. 2015. CTFS ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528-549. (10.1111/gcb.12712) PubMed DOI
Lucas M, Forero D, Basset Y. 2016. Diversity and recent population trends of assassin bugs (Hemiptera: Reduviidae) on Barro Colorado Island, Panama. Insect Conserv. Divers. 9, 546-558. (10.1111/icad.12191) DOI
Hackforth CN, et al. . In preparation. Functional classification of Neotropical tiger moths (Erebidae-Arctiinae) provides insight on vulnerability to climate change. Manuscript in preparation for Funct. Ecol.
Basset Y, et al. 2017. The Saturniidae of Barro Colorado Island, Panama: a model taxon for studying the long-term effects of climate change? Ecol. Evol. 7, 1-14. (10.1002/ece3.3515) PubMed DOI PMC
Lamarre GPA, et al. 2022. Data from: More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama. FigShare. See https://smithsonian.figshare.com/articles/dataset/More_winners_than_losers_over_12_years_of_monitoring_tiger_moths_Erebidae_Arctiinae_on_Barro_Colorado_Island_Panama/16850218. PubMed PMC
Hartig F. 2019. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2.4.
Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp, S, Van Willigen B, Maintainer R. 2017. Package ‘nlme’. Linear and nonlinear mixed effects models, version, 3(1).
Kembel S, Cowan P, Helmus M, Cornwell W, Morlon H, Ackerly D, Blomberg S, Webb C. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463-1464. (10.1093/bioinformatics/btq166) PubMed DOI
Salcido DM, Forister ML, Garcia Lopez H, Dyer LA. 2020. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422. (10.1038/s41598-019-57226-9) PubMed DOI PMC
Janzen DH, Hallwachs W. 2021. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let's be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117. (10.1073/pnas.2002546117) PubMed DOI PMC
Forister ML, et al. 2021. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 371, 1042-1045. (10.1126/science.abe5585) PubMed DOI
Fox J, et al. 2012. Package ‘car’, p. 16. Vienna, Austria: R Foundation for Statistical Computing.
Fox R, et al. . 2021. The state of Britain's larger moths 2021. Wareham, UK: Butterfly Conservation, Rothamsted Research and UK Centre for Ecology & Hydrology. See https://butterfly-conservation.org/sites/default/files/2021-03/StateofMothsReport2021.pdf.
Hayes MP, Hitchcock GE, Knock RI, Lucas CBH, Tuerner EC. 2019. Temperature and territoriality in the Duke of Burgundy butterfly, Hamearis lucina. J. Ins. Cons. 23, 739-750. (10.1007/s10841-019-00166-6) DOI
Rebaudo F, Rabhi VB. 2018. Modeling temperature-dependent development rate and phenology in insects: review of major developments, challenges, and future directions. Entom. Exp. Appl. 166, 607-617. (10.1111/eea.12693) DOI
Iltis C, Louapre P, Pecharova K, Thiery D, Zito S, Bois B, Moreau J. 2019. Are life-history traits equally affected by global warming? A case study combining a multi-trait approach with fine-grain climate modeling. J. Ins. Physiol. 117, 103916. (10.1016/j.jinsphys.2019.103916) PubMed DOI
IPCC. 2021. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V., et al.). Cambridge, UK: Cambridge University Press. See https://www.ipcc.ch/report/ar6/wg1/#FullReport.
Stocker T, et al. . 2014. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. See https://www.ipcc.ch/report/ar5/wg1/.
Climate drives the long-term ant male production in a tropical community
figshare
10.6084/m9.figshare.c.5896928