Population trends of insect pollinators in a species-rich tropical rainforest: stable trends but contrasting patterns across taxa
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Smithsonian Tropical Research Institute
Grantová Agentura České Republiky
PubMed
39691948
PubMed Central
PMC11653113
DOI
10.1098/rsbl.2024.0170
Knihovny.cz E-zdroje
- Klíčová slova
- bee, beetle, butterfly, climate change, long-term monitoring, pollinator decline,
- MeSH
- deštný prales * MeSH
- hmyz * fyziologie MeSH
- klimatické změny MeSH
- opylení * MeSH
- populační dynamika MeSH
- tropické klima MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Panama MeSH
Recent reports of insect decline have raised concerns regarding population responses of ecologically important groups, such as insect pollinators. Additionally, how population trends vary across pollinator taxonomic groups and degree of specialization is unclear. Here, we analyse 14 years of abundance data (2009-2022) for 38 species of native insect pollinators, including a range of Coleoptera, Lepidoptera and Hymenoptera specialists and generalists from the tropical rainforest of Barro Colorado Island, Panama. We estimated population trends across taxonomic groups to determine whether specialist species with a narrower range of interacting mutualistic partners are experiencing steeper population declines under environmental change. We also examined the relationship between climate variables and pollinator abundance over time to determine whether differences in sensitivity to climate predict differences in population trends among pollinator species. Our analyses indicated that most pollinator populations were stable or increasing, with few species showing evidence of decline, regardless of their degree of specialization. Differences in climate sensitivity varied among pollinator species but were not associated with population trends, suggesting other environmental factors at play for tropical insect pollinators. These results highlight the need for long-term population data from diverse tropical taxa to better assess the environmental determinants of insect pollinator trends.
Department of Biology Utah State University Logan UT USA
Faculty of Sciences University of South Bohemia Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Halsch CA, Shapiro AM, Fordyce JA, Nice CC, Thorne JH, Waetjen DP, Forister ML. 2021. Insects and recent climate change. Proc. Natl Acad. Sci. USA 118 , e2002543117. (10.1073/pnas.2002543117) PubMed DOI PMC
Sánchez‐Bayo F, Wyckhuys KAG. 2021. Further evidence for a global decline of the entomofauna. Aust. Entomol. 60 , 9–26. (10.1111/aen.12509) DOI
Dalton RM, Underwood NC, Inouye DW, Soulé ME, Inouye BD. 2023. Long‐term declines in insect abundance and biomass in a subalpine habitat. Ecosphere 14 , e4620. (10.1002/ecs2.4620) DOI
Eggleton P. 2020. The state of the world’s insects. Annu. Rev. Environ. Resour. 45 , 61–82. (10.1146/annurev-environ-012420-050035) DOI
Wagner DL. 2020. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65 , 457–480. (10.1146/annurev-ento-011019-025151) PubMed DOI
Cai W, et al. . 2014. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Chang. 4 , 111–116. (10.1038/nclimate2100) DOI
Wang B, Luo X, Yang YM, Sun W, Cane MA, Cai W, Yeh SW, Liu J. 2019. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl Acad. Sci. USA 116 , 22512–22517. (10.1073/pnas.1911130116) PubMed DOI PMC
Stephens RE, Gallagher RV, Dun L, Cornwell W, Sauquet H. 2023. Insect pollination for most of angiosperm evolutionary history. New Phytol. 240 , 880–891. (10.1111/nph.18993) PubMed DOI
Bartomeus I, et al. . 2014. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2 , e328. (10.7717/peerj.328) PubMed DOI PMC
Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants are pollinated by animals? Oikos 120 , 321–326. (10.1111/j.1600-0706.2010.18644.x) DOI
Jackson HM, Johnson SA, Morandin LA, Richardson LL, Guzman LM, M’Gonigle LK. 2022. Climate change winners and losers among North American bumblebees. Biol. Lett. 18 , 20210551. (10.1098/rsbl.2021.0551) PubMed DOI PMC
Geldmann J, González-Varo JP. 2018. Conserving honey bees does not help wildlife. Science 359 , 392–393. (10.1126/science.aar2269) PubMed DOI
Millard J, Outhwaite CL, Ceaușu S, Carvalheiro LG, da Silva E Silva FD, Dicks LV, Ollerton J, Newbold T. 2023. Key tropical crops at risk from pollinator loss due to climate change and land use. Sci. Adv. 9 , eadh0756. (10.1126/sciadv.adh0756) PubMed DOI PMC
Johnson SD, Steiner KE. 2000. Generalization versus specialization in plant pollination systems. Trends Ecol. Evol. 15 , 140–143. (10.1016/s0169-5347(99)01811-x) PubMed DOI
Armbruster WS. 2017. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. Funct. Ecol. 31 , 88–100. (10.1111/1365-2435.12783/SUPPINFO) DOI
Didham RK, et al. . 2020. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Divers. 13 , 103–114. (10.1111/icad.12408) DOI
Lamarre GPA, Fayle TM, Segar ST, Laird-Hopkins BC, Nakamura A, Souto-Vilarós D, Watanabe S, Basset Y. 2020. Monitoring tropical insects in the 21st century. Adv. Ecol. Res. 62 , 295–330. (10.1016/bs.aecr.2020.01.004) DOI
Basset Y, et al. . 2023. Abundance, occurrence and time series: long-term monitoring of social insects in a tropical rainforest. Ecol. Indic. 150 , 110243. (10.1016/j.ecolind.2023.110243) DOI
Basset Y, et al. . 2013. Cross‐continental comparisons of butterfly assemblages in tropical rainforests: implications for biological monitoring. Insect Conserv. Divers. 6 , 223–233. (10.1111/j.1752-4598.2012.00205.x) DOI
Smith AR, López Quintero IJ, Moreno Patiño JE, Roubik DW, Wcislo WT. 2012. Pollen use by Megalopta sweat bees in relation to resource availability in a tropical forest. Ecol. Entomol. 37 , 309–317. (10.1111/j.1365-2311.2012.01367.x) DOI
Roubik DW, Hanson PE. 2004. Abejas de orquídeas de la América tropical: biología y guía de campo. Orchid bees of tropical America: biology and field guide, 1st edn. Costa Rica: Santo Domingo de Heredia.
Ramirez S, Dressler RL, Ospina M. 2002. Abejas euglosinas (Hymenoptera: Apidae) de la Región Neotropical: listado de especies con notas sobre su biología. Biota Colomb. 3 , 7–118.
Moore MR, Jameson ML. 2013. Floral associations of cyclocephaline scarab beetles. J. Insect Sci. 13 , 100. (10.1673/031.013.10001) PubMed DOI PMC
Basset Y, et al. . 2023. Towards a functional classification of poorly known tropical insects: the case of rhinoceros beetles (Coleoptera, Dynastinae) in Panama. Insect Conserv. Diversity 16 , 147–163. (10.1111/icad.12613) DOI
Gibernau M, Maia ACD, do Amaral Navarro D. 2021. Pollination ecology and floral scent chemistry of Philodendron fragrantissimum (Araceae). Bot. Lett. 168 , 384–394. (10.1080/23818107.2021.1909497) DOI
Saravy FP, Marques MI, Schuchmann KL. 2021. Coleopteran pollinators of Annonaceae in the Brazilian Cerrado—a review. Diversity 13 , 438. (10.3390/d13090438) DOI
Seymour RS, White CR, Gibernau M. 2009. Endothermy of dynastine scarab beetles (Cyclocephala colasi) associated with pollination biology of a thermogenic arum lily (Philodendron solimoesense). J. Exp. Biol. 212 , 2960–2968. (10.1242/jeb.032763) PubMed DOI
Pardikes NA, Shapiro AM, Dyer LA, Forister ML. 2015. Global weather and local butterflies: variable responses to a large-scale climate pattern along an elevational gradient. Ecology 96 , 2891–2901. (10.1890/15-0661.1) PubMed DOI
Srygley RB, Dudley R, Oliveira EG, Riveros AJ. 2014. El Niño, host plant growth, and migratory butterfly abundance in a changing climate. Biotropica 46 , 90–97. (10.1111/btp.12081) DOI
Goodrich B, Gabry J, Ali I, Brilleman S. 2022. rstanarm: Bayesian applied regression modeling via Stan.
R Core Team . 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Lamarre GPA, et al. . 2022. More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama. Biol. Lett. 18 , 20210519. (10.1098/rsbl.2021.0519) PubMed DOI PMC
Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 , 1–48. (10.18637/jss.v067.i01) DOI
Hartig F. 2022. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. See https://CRAN.R-project.org/package=DHARMa.
Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York, NY: Springer. (10.1007/978-0-387-98141-3) DOI
Detto M, Wright SJ, Calderón O, Muller-Landau HC. 2018. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño-Southern Oscillation. Nat. Commun. 9 , 913. (10.1038/s41467-018-03306-9) PubMed DOI PMC
Wright SJ, Calderón O. 2006. Seasonal, El Niño and longer term changes in flower and seed production in a moist tropical forest. Ecol. Lett. 9 , 35–44. (10.1111/j.1461-0248.2005.00851.x) PubMed DOI
Aleixo KP, Menezes C, Imperatriz Fonseca VL, da Silva CI. 2017. Seasonal availability of floral resources and ambient temperature shape stingless bee foraging behavior (Scaptotrigona aff. depilis). Apidologie 48 , 117–127. (10.1007/s13592-016-0456-4) DOI
Van Bael SA, Aiello A, Valderrama A, Medianero E, Samaniego M, Wright SJ. 2004. General herbivore outbreak following an El Niño-related drought in a lowland Panamanian forest. J. Trop. Ecol. 20 , 625–633. (10.1017/S0266467404001725) DOI
Poulsen BO. 1996. Relationships between frequency of mixed‐species flocks, weather and insect activity in a montane cloud forest in Ecuador. Ibis 138 , 466–470. (10.1111/j.1474-919X.1996.tb08066.x) DOI
Lawson DA, Rands SA. 2019. The effects of rainfall on plant–pollinator interactions. Arthropod Plant Interact. 13 , 561–569. (10.1007/s11829-019-09686-z) DOI
Ashe-Jepson E, et al. . 2023. Tropical butterflies use thermal buffering and thermal tolerance as alternative strategies to cope with temperature increase. J. Anim. Ecol. 92 , 1759–1770. (10.1111/1365-2656.13970) PubMed DOI PMC
Zayed A, Roubik DW, Packer L. 2004. Use of diploid male frequency data as an indicator of pollinator decline. Proc. R. Soc. Lond. B 271 , S9–S12. (10.1098/rsbl.2003.0109) PubMed DOI PMC
Lebuhn G, et al. . 2013. Detecting insect pollinator declines on regional and global scales. Conserv. Biol. 27 , 113–120. (10.1111/j.1523-1739.2012.01962.x) PubMed DOI
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25 , 345–353. (10.1016/j.tree.2010.01.007) PubMed DOI
Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D. 2021. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118 , e2023989118. (10.1073/pnas.2023989118) PubMed DOI PMC
de Sousa FG, dos Santos JS, Martello F, Diniz MF, Bergamini LL, Ribeiro MC, Collevatti RG, Silva DP. 2022. Natural habitat cover and fragmentation per se influence orchid-bee species richness in agricultural landscapes in the Brazilian Cerrado. Apidologie 53 , 20. (10.1007/s13592-022-00925-6) DOI
Leigh EG. 1999. Tropical forest ecology: a view from Barro Colorado Island. Oxford, UK: Oxford University Press.
Roubik DW, Basset Y, Lopez Y, Bobadilla R, Perez F, Ramírez S. JA. 2021. Long‐term (1979–2019) dynamics of protected orchid bees in Panama. Conservat. Sci. Prac. 3 , e543. (10.1111/csp2.543) DOI
Wardhaugh CW. 2015. How many species of arthropods visit flowers? Arthropod Plant Interact. 9 , 547–565. (10.1007/s11829-015-9398-4) DOI
Ollerton J. 2017. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48 , 353–376. (10.1146/annurev-ecolsys-110316-022919) DOI
STRI Arthropod Program . Welcome to the STRI Arthropod Program! See https://fgeoarthropods.si.edu/.
Bonadies E, Lamarre GPA, Souto-Vilarós D, Pardikes NA, Ramirez Silva JA, Perez F, Bobadilla R, Lopez Y, Basset Y. 2024. Supplementary electronic material from: Population trends of insect pollinators in a species-rich tropical rainforest: stable trends but contrasting patterns across taxa. Dryad Digital Repository. (10.5061/dryad.f7m0cfz58) PubMed DOI
Bonadies E, Lamarre G, Souto-Vilarós D, Pardikes NA, Silva JAR, Perez Fet al. . 2024. Supplementary material from: Population trends of insect pollinators in a species-rich tropical rainforest: stable trends but contrasting patterns across taxa. Figshare. (10.6084/m9.figshare.c.7560268) PubMed DOI