Tropical butterflies use thermal buffering and thermal tolerance as alternative strategies to cope with temperature increase

. 2023 Sep ; 92 (9) : 1759-1770. [epub] 20230712

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37438871

Grantová podpora
BABE 805189 European Research Council - International

Climate change poses a severe threat to many taxa, with increased mean temperatures and frequency of extreme weather events predicted. Insects can respond to high temperatures using behaviour, such as angling their wings away from the sun or seeking cool local microclimates to thermoregulate or through physiological tolerance. In a butterfly community in Panama, we compared the ability of adult butterflies from 54 species to control their body temperature across a range of air temperatures (thermal buffering ability), as well as assessing the critical thermal maxima for a subset of 24 species. Thermal buffering ability and tolerance were influenced by family, wing length, and wing colour, with Pieridae, and butterflies that are large or darker in colour having the strongest thermal buffering ability, but Hesperiidae, small, and darker butterflies tolerating the highest temperatures. We identified an interaction between thermal buffering ability and physiological tolerance, where species with stronger thermal buffering abilities had lower thermal tolerance, and vice versa. This interaction implies that species with more stable body temperatures in the field may be more vulnerable to increases in ambient temperatures, for example heat waves associated with ongoing climate change. Our study demonstrates that tropical species employ diverse thermoregulatory strategies, which is also reflected in their sensitivity to temperature extremes.

El cambio climático representa una grave amenaza para muchos taxones, con un aumento de las temperaturas medias y la frecuencia de eventos climáticos extremos pronosticados. Los insectos pueden responder a las altas temperaturas mediante comportamientos, como inclinar sus alas fuera del alcance del sol o buscar microclimas frescos locales para termorregular, o a través de la tolerancia fisiológica. En una comunidad de mariposas en Panamá, comparamos la capacidad de las mariposas adultas de 54 especies para controlar su temperatura corporal en un rango de temperaturas del aire (capacidad de amortiguación térmica), así como evaluar el máximo térmico crítico para un subconjunto de 24 especies. La capacidad de amortiguación térmica y la tolerancia se influenciaron por la familia, la longitud del ala y el colour del ala; con Pieridae y mariposas grandes o de colour más oscuro teniendo la capacidad de amortiguación térmica más fuerte, pero Hesperiidae, mariposas pequeñas y de colour más oscuro tolerando las temperaturas más altas. Identificamos una relación entre la capacidad de amortiguación térmica y la tolerancia fisiológica, en la que las especies con mayores capacidades de amortiguación térmica tenían una menor tolerancia térmica, y viceversa. Esta interacción implica que las especies con temperaturas corporales más estables en el campo pueden ser más vulnerables a los aumentos en las temperaturas ambientales, por ejemplo, las olas de calor asociadas con el cambio climático actual. Nuestra investigación demuestra que las especies tropicales emplean diversas estrategias de termorregulación, las cuales también se reflejan en su sensibilidad a las temperaturas extremas.

Zobrazit více v PubMed

Angilletta, M. J., Jr. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press.

Ashe‐Jepson, E. , Arizala Cobo, S. , Basset, Y. , Bladon, A. J. , Kleckova, I. , Laird‐Hopkins, B. C. , Mcfarlane, A. , Sam, K. , Savage, A. F. , Zamora, A. C. , Turner, E. C. , & Lamarre, G. P. A. (2023). Research data supporting “Tropical butterflies use thermal buffering and thermal tolerance as alternative strategies to cope with temperature change”. Apollo—University of Cambridge Repository. 10.17863/CAM.97060 PubMed DOI PMC

Baudier, K. M. , Mudd, A. E. , Erickson, S. C. , & O'Donnell, S. (2015). Microhabitat and body size effects on heat tolerance: Implications for responses to climate change (army ants: Formicidae, Ecitoninae). The Journal of Animal Ecology, 84, 1322–1330. PubMed

Berthier, S. (2005). Thermoregulation and spectral selectivity of the tropical butterfly Prepona meander: A remarkable example of temperature auto‐regulation. Applied Physics A, 80(7), 1397–1400.

Betts, C. R. , & Wootton, R. J. (1988). Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): A preliminary analysis. The Journal of Experimental Biology, 138, 271–288.

Bladon, A. J. , Lewis, M. , Bladon, E. K. , Buckton, S. J. , Corbett, S. , Ewing, S. R. , Hayes, M. P. , Hitchcock, G. E. , Knock, R. , Lucas, C. , McVeigh, A. , Menéndez, R. , Walker, J. M. , Fayle, T. M. , & Turner, E. C. (2020). How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends. The Journal of Animal Ecology, 89, 2440–2450. PubMed

Bonebrake, T. C. , Ponisio, L. C. , Boggs, C. L. , & Ehrlich, P. R. (2010). More than just indicators: A review of tropical butterfly ecology and conservation.

Buckley, L. B. , Ehrenberger, J. C. , & Angilletta, M. J. (2015). Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Functional Ecology, 29, 1038–1047.

Clench, H. K. (1966). Behavioral thermoregulation in butterflies. Ecology, 47, 1021–1034.

Cornelissen, T. (2011). Climate change and its effects on terrestrial insects and herbivory patterns. Neotropical Entomology, 40, 155–163. PubMed

De Keyser, R. , Breuker, C. J. , Hails, R. S. , Dennis, R. L. H. , & Shreeve, T. G. (2015). Why small is beautiful: Wing colour is free from thermoregulatory constraint in the small Lycaenid Butterfly, Polyommatus icarus . PLoS ONE, 10, e0122623. PubMed PMC

De Palma, A. , Dennis, R. L. H. , Brereton, T. , Leather, S. R. , & Oliver, T. H. (2017). Large reorganizations in butterfly communities during an extreme weather event. Ecography (Cop.)., 40, 577–585.

Dongmo, M. A. K. , Hanna, R. , Smith, T. B. , Fiaboe, K. K. M. , Fomena, A. , & Bonebrake, T. C. (2021). Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats. Biology Open, 10, bio058619. PubMed PMC

Duffy, G. A. , Coetzee, B. W. , Janion‐Scheepers, C. , & Chown, S. L. (2015). Microclimate‐based macrophysiology: Implications for insects in a warming world. Current Opinion in Insect Science, 11, 84–89. PubMed

Dufour, P. C. , Willmott, K. R. , Padrón, P. S. , Xing, S. , Bonebrake, T. C. , & Scheffers, B. R. (2018). Divergent melanism strategies in Andean butterfly communities structure diversity patterns and climate responses. Journal of Biogeography, 45, 2471–2482.

Fischer, K. , Klockmann, M. , & Reim, E. (2014). Strong negative effects of simulated heat waves in a tropical butterfly. The Journal of Experimental Biology, 217, 2892–2898. PubMed

Gilchrist, G. W. (1990). The consequences of sexual dimorphism in body size for butterfly flight and thermoregulation. Functional Ecology, 4, 475.

González‐Tokman, D. , Córdoba‐Aguilar, A. , Dáttilo, W. , Lira‐Noriega, A. , Sánchez‐Guillén, R. A. , & Villalobos, F. (2020). Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biological Reviews, 95, 802–821. PubMed

Grinder, R. M. , & Wiens, J. J. (2022). Niche width predicts extinction from climate change and vulnerability of tropical species. Global Change Biology, 29, 618–630. PubMed

Heath, J. E. , Hanegan, J. L. , Wilkin, P. J. , & Heath, M. S. (1971). Adaptation of the thermal responses of insects. Integrative and Comparative Biology, 11, 147–158.

Huey, R. B. , Crill, W. D. , Kingsolver, J. G. , & Weber, K. E. (1992). A method for rapid measurement of heat or cold resistance of small insects. Functional Ecology, 6, 489.

Huey, R. B. , Hertz, P. E. , & Sinervo, B. (2003). Behavioral drive versus behavioral inertia in evolution: A null model approach. The American Naturalist, 161, 357–366. PubMed

Jentsch, A. , Kreyling, J. , & Beierkuhnlein, C. (2007). A new generation of climate‐change experiments: Events, not trends. Frontiers in Ecology and the Environment, 5, 365–374.

Kammer, A. E. (1970). Thoracic temperature, shivering, and flight in the monarch butterfly, Danaus plexippus (L.). Zeitschrift für Vergleichende Physiologie, 68, 334–344.

Karlsson, B. , & Wiklund, C. (2005). Butterfly life history and temperature adaptations; dry open habitats select for increased fecundity and longevity. The Journal of Animal Ecology, 74, 99–104.

Kassambara, A. , Kosinski, M. , & Biecek, P. (2021). survminer: Drawing survival curves using “ggplot2”. R package version 0.4.9.

Kellermann, V. , van Heerwaardenf, B. , & Sgrò, C. M. (2017). How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 284, 20170447. PubMed PMC

Kemp, D. J. , & Krockenberger, A. K. (2004). Behavioural thermoregulation in butterflies: The interacting effects of body size and basking posture in Hypolimnas bolina (L.) (Lepidoptera : Nymphalidae). Australian Journal of Zoology, 52, 229–239.

Khazan, E. S. , Haggard, J. , Ríos‐Málaver, I. C. , Shirk, P. , & Scheffers, B. R. (2022). Disentangling drivers of thermal physiology: Community‐wide cold shock recovery of butterflies under natural conditions. Biotropica, 54, 205–214.

Kingsolver, J. G. , Diamond, S. E. , & Buckley, L. B. (2013). Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Functional Ecology, 27, 1415–1423.

Klockmann, M. , Günter, F. , & Fischer, K. (2017). Heat resistance throughout ontogeny: Body size constrains thermal tolerance. Global Change Biology, 23, 686–696. PubMed

Kuznetsova, A. , Brockhoff, P. B. , & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effect models. Journal of Statistical Software, 82, 1–26.

Lachenicht, M. W. , Clusella‐Trullas, S. , Boardman, L. , Le Roux, C. , & Terblanche, J. S. (2010). Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). Journal of Insect Physiology, 56, 822–830. PubMed

Long, J. A. (2019). Interactions: Comprehensive, user‐friendly toolkit for probing interactions. R package version 1.1.0.

Lüdecke, D. (2021). sjPlot: Data visualization for statistics in social science. R package version 2.8.10.

Luo, S. , Chong Wong, S. , Xu, C. , Hanski, I. , Wang, R. , & Lehtonen, R. (2014). Phenotypic plasticity in thermal tolerance in the Glanville fritillary butterfly. Journal of Thermal Biology, 42, 33–39. PubMed

Maino, J. L. , Kong, J. D. , Hoffmann, A. A. , Barton, M. G. , & Kearney, M. R. (2016). Mechanistic models for predicting insect responses to climate change. Current Opinion in Insect Science, 17, 81–86. PubMed

McDonald, A. K. , & Nijhout, H. F. (2000). The effect of environmental conditions on mating activity of the Buckeye butterfly, Precis coenia . Journal of Research on the Lepidoptera, 35, 22–28.

Merckx, T. , Karlsson, B. , & Van Dyck, H. (2006). Sex‐ and landscape‐related differences in flight ability under suboptimal temperatures in a woodland butterfly. Functional Ecology, 20, 436–441.

Montejo‐Kovacevich, G. , Martin, S. H. , Meier, J. I. , Bacquet, C. N. , Monllor, M. , Jiggins, C. D. , & Nadeau, N. J. (2020). Microclimate buffering and thermal tolerance across elevations in a tropical butterfly. The Journal of Experimental Biology, 223, jeb220426. PubMed PMC

Nève, G. , & Hall, C. (2016). Variation of thorax flight temperature among twenty Australian butterflies (Lepidoptera: Papilionidae, Nymphalidae, Pieridae, Hesperiidae, Lycaenidae). European Journal of Entomology, 113, 571–578.

Nguyen, A. D. , Gotelli, N. J. , & Cahan, S. H. (2016). The evolution of heat shock protein sequences, cis‐regulatory elements, and expression profiles in the eusocial Hymenoptera. BMC Evolutionary Biology, 16, 1–13. PubMed PMC

Pallas, J. E. , Michel, B. E. , & Harris, D. G. (1967). Photosynthesis, transpiration, leaf temperature, and stomatal activity of cotton plants under varying water potentials. Plant Physiology, 42, 76–88. PubMed PMC

Peixoto, P. E. C. , & Benson, W. W. (2008). Body mass and not wing length predicts territorial success in a tropical Satyrine butterfly. Ethology, 114, 1069–1077.

R Core Team . (2017). R: A language and environment for statistical computing .

Radchuk, V. , Turlure, C. , & Schtickzelle, N. (2013). Each life stage matters: The importance of assessing the response to climate change over the complete life cycle in butterflies. The Journal of Animal Ecology, 82, 275–285. PubMed

Ribeiro, P. L. , Camacho, A. , & Navas, C. A. (2012). Considerations for assessing maximum critical temperatures in small ectothermic animals: Insights from leaf‐cutting ants. PLoS ONE, 7, 32083. PubMed PMC

Robbins, R. K. (1982). How many butterfly species? News Lepidopterists Society, 3, 40–41.

Sekar, S. (2012). A meta‐analysis of the traits affecting dispersal ability in butterflies: Can wingspan be used as a proxy? The Journal of Animal Ecology, 81, 174–184. PubMed

Senior, R. A. , Hill, J. K. , & Edwards, D. P. (2019). Global loss of climate connectivity in tropical forests. Nature Climate Change, 98(9), 623–626.

Shanks, K. , Senthilarasu, S. , Ffrench‐Constant, R. H. , & Mallick, T. K. (2015). White butterflies as solar photovoltaic concentrators. Scientific Reports, 51(5), 1–10. PubMed PMC

Terblanche, J. S. , Deere, J. A. , Clusella‐Trullas, S. , Janion, C. , & Chown, S. L. (2007). Critical thermal limits depend on methodological context. Proceedings of the Royal Society B: Biological Sciences, 274, 2935–2942. PubMed PMC

Therneau, T. M. (2022). A package for survival analysis in R. R package version 3.3.‐1.

Watt, W. B. (1968). Adaptive significance of pigment polymorphisms in colias butterflies. I. Variation of melanin pigment in relation to thermoregulation. Evolution (N. Y)., 22, 437. PubMed

Wenda, C. , Xing, S. , Nakamura, A. , & Bonebrake, T. C. (2021). Morphological and behavioural differences facilitate tropical butterfly persistence in variable environments. The Journal of Animal Ecology, 90, 2888–2900. PubMed

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer‐Verlag.

Zeuss, D. , Brandl, R. , Brändle, M. , Rahbek, C. , & Brunzel, S. (2014). Global warming favours light‐coloured insects in Europe. Nature Communications, 51(5), 1–9. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...