Morphological and behavioural differences facilitate tropical butterfly persistence in variable environments
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- behaviour, biophysical models, climate change, subtropical, thermoregulation,
- MeSH
- Climate Change MeSH
- Butterflies * MeSH
- Temperature MeSH
- Body Temperature Regulation MeSH
- Tropical Climate MeSH
- Hot Temperature MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The thermal biology of ectotherms largely determines their abundance and distributions. In general, tropical species inhabiting warm and stable thermal environments tend to have low tolerance to cold and variable environments, which may restrict their expansion into temperate climates. However, the distribution of some tropical species does extend into cooler areas such as tropical borders and high elevation tropical mountains. Behavioural and morphological differences may therefore play important roles in facilitating tropical species to cope with cold and variable climates at tropical edges. We used field-validated biophysical models to estimate body temperatures of butterflies across elevational gradients at three sites in southern China and assessed the contribution of behavioural and morphological differences in facilitating their persistence in tropical and temperate climates. We investigated the effects of temperature on the activity of 4,844 individuals of 144 butterfly species along thermal gradients and tested whether species of different climatic affinities-tropical and widespread (distributed in both temperate and tropical regions)-differed in their thermoregulatory strategies (i.e. basking). In addition, we tested whether thermally related morphology or the strength of solar radiation (when butterflies were recorded) was related to such differences. We found that activities of tropical species were restricted (low abundance) at low air temperatures compared to widespread species. Active tropical species were also more likely to bask at cooler body temperatures than widespread species. Heat gain from behavioural thermoregulation was higher for tropical species (when accounting for species abundance), and heat gain correlated with larger thorax widths but not with measured solar radiation. Our results indicate that physiological intolerance to cold temperatures in tropical species may be compensated through behavioural and morphological responses in thermoregulation in variable subtropical environments. Increasing climatic variability with climate change may render tropical species more vulnerable to cold weather extremes compared to widespread species that are more physiologically suited to variable environments.
See more in PubMed
Addo-Bediako, A., Chown, S. L., & Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1445), 739-745. https://doi.org/10.1098/rspb.2000.1065
Asplund, J., & Wardle, D. A. (2014). Within-species variability is the main driver of community-level responses of traits of epiphytes across a long-term chronosequence. Functional Ecology, 28(6), 1513-1522. https://doi.org/10.1111/1365-2435.12278
Ayres, M. P., & Scriber, J. M. (1994). Local adaptation to regional climates in Papilio canadensis (Lepidoptera: Papilionidae). Ecological Monographs, 64(4), 465-482. https://doi.org/10.2307/2937146
Bascombe, M. J., Johnston, G., & Bascombe, F. S. (1999). The butterflies of Hong Kong. Academic Press.
Bates, D., Sarkar, D., Bates, M. D., & Matrix, L. (2007). The lme4 package. R Package Version, 2(1), 74.
Bladon, A. J., Lewis, M., Bladon, E. K., Buckton, S. J., Corbett, S., Ewing, S. R., Hayes, M. P., Hitchcock, G. E., Knock, R., Lucas, C., McVeigh, A., Menéndez, R., Walker, J. M., Fayle, T. M., & Turner, E. C. (2020). How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13319
Bogert, C. M. (1949). Thermoregulation in reptiles, a factor in evolution. Evolution, 3(3), 195-211. https://doi.org/10.1111/j.1558-5646.1949.tb00021.x
Bonebrake, T. C. (2013). Conservation implications of adaptation to tropical climates from a historical perspective. Journal of Biogeography, 40(3), 409-414. https://doi.org/10.1111/jbi.12011
Bonebrake, T. C., Boggs, C. L., Stamberger, J. A., Deutsch, C. A., & Ehrlich, P. R. (2014). From global change to a butterfly flapping: Biophysics and behaviour affect tropical climate change impacts. Proceedings of the Royal Society of London B: Biological Sciences, 281(1793), 20141264.
Bonebrake, T. C., Brown, C. J., Bell, J. D., Blanchard, J. L., Chauvenet, A., Champion, C., Chen, I.-C., Clark, T. D., Colwell, R. K., Danielsen, F., Dell, A. I., Donelson, J. M., Evengård, B., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B., Hobday, A. J., Jarzyna, M. A., … Pecl, G. T. (2018). Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 93(1), 284-305. https://doi.org/10.1111/brv.12344
Boucek, R. E., Gaiser, E. E., Liu, H., & Rehage, J. S. (2016). A review of subtropical community resistance and resilience to extreme cold spells. Ecosphere, 7(10). https://doi.org/10.1002/ecs2.1455
Buckley, L. B., Ehrenberger, J. C., & Angilletta, M. J. (2015). Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Functional Ecology, 29(8), 1038-1047. https://doi.org/10.1111/1365-2435.12406
Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., & Jin, F.-F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111. https://doi.org/10.1038/nclimate2100
Castro, L. C., Cetina-Heredia, P., Roughan, M., Dworjanyn, S., Thibaut, L., Chamberlain, M. A., Feng, M., & Vergés, A. (2020). Combined mechanistic modelling predicts changes in species distribution and increased co-occurrence of a tropical urchin herbivore and a habitat-forming temperate kelp. Diversity and Distributions, 26(9), 1211-1226. https://doi.org/10.1111/ddi.13073
Chou, I. (1999). Monographia Rhopalocerorum Sinensium (Revised Edition). Henan Scientific and Technological Publishing House.
Clench, H. K. (1966). Behavioral thermoregulation in butterflies. Ecology, 47(6), 1021-1034. https://doi.org/10.2307/1935649
Clusella-Trullas, S., van Wyk, J. H., & Spotila, J. R. (2007). Thermal melanism in ectotherms. Journal of Thermal Biology, 32(5), 235-245. https://doi.org/10.1016/j.jtherbio.2007.01.013
Cormont, A., Malinowska, A. H., Kostenko, O., Radchuk, V., Hemerik, L., WallisDeVries, M. F., & Verboom, J. (2011). Effect of local weather on butterfly flight behaviour, movement, and colonization: Significance for dispersal under climate change. Biodiversity and Conservation, 20(3), 483-503. https://doi.org/10.1007/s10531-010-9960-4
Crozier, L. (2003). Winter warming facilitates range expansion: Cold tolerance of the butterfly Atalopedes campestris. Oecologia, 135(4), 648-656. https://doi.org/10.1007/s00442-003-1219-2
Cudmore, T. J., Björklund, N., Carroll, A. L., & Staffan Lindgren, B. (2010). Climate change and range expansion of an aggressive bark beetle: Evidence of higher beetle reproduction in naïve host tree populations. Journal of Applied Ecology, 47(5), 1036-1043. https://doi.org/10.1111/j.1365-2664.2010.01848.x
Diamond, S. E., Sorger, D. M., Hulcr, J., Pelini, S. L., Toro, I. D., Hirsch, C., Oberg, E., & Dunn, R. R. (2012). Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Global Change Biology, 18(2), 448-456. https://doi.org/10.1111/j.1365-2486.2011.02542.x
Domínguez-Guerrero, S. F., Muñoz, M. M., de Jesús Pasten-Téllez, D., Arenas-Moreno, D. M., Rodríguez-Miranda, L. A., Manríquez-Morán, N. L., & Méndez-de la Cruz, F. R. (2019). Interactions between thermoregulatory behaviour and physiological acclimatization in a wild lizard population. Journal of Thermal Biology, 79, 135-143.
Downing, J., Borrero, H., & Liu, H. (2016). Differential impacts from an extreme cold spell on subtropical vs. tropical specialist bees in southern Florida. Ecosphere, 7(5). https://doi.org/10.1002/ecs2.1302
Ellers, J., & Boggs, C. L. (2004). Functional ecological implications of intraspecific differences in wing melanization in Colias butterflies. Biological Journal of the Linnean Society, 82(1), 79-87. https://doi.org/10.1111/j.1095-8312.2004.00319.x
Farallo, V. R., Wier, R., & Miles, D. B. (2018). The Bogert effect revisited: Salamander regulatory behaviours are differently constrained by time and space. Ecology and Evolution, 8(23), 11522-11532.
Gadek, C. R., Newsome, S. D., Beckman, E. J., Chavez, A. N., Galen, S. C., Bautista, E., & Witt, C. C. (2017). Why are tropical mountain passes ‘low’ for some species? Genetic and stable-isotope tests for differentiation, migration and expansion in elevational generalist songbirds. Journal of Animal Ecology, 87(3), 741-753. https://doi.org/10.1111/1365-2656.12779
Gauch, H. G., Hwang, J. G., & Fick, G. W. (2003). Model evaluation by comparison of model-based predictions and measured values. Agronomy Journal, 95(6), 1442-1446. https://doi.org/10.2134/agronj2003.1442
Geng, X., Zhang, W., Stuecker, M. F., & Jin, F. F. (2017). Strong sub-seasonal wintertime cooling over East Asia and Northern Europe associated with super El Niño events. Scientific Reports, 7(1), 3770. https://doi.org/10.1038/s41598-017-03977-2
Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J., & Wang, G. (2006). Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integrative and Comparative Biology, 46(1), 5-17. https://doi.org/10.1093/icb/icj003
Giehl, E. L. H., & Jarenkow, J. A. (2012). Niche conservatism and the differences in species richness at the transition of tropical and subtropical climates in South America. Ecography, 35(10), 933-943. https://doi.org/10.1111/j.1600-0587.2011.07430.x
Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology (Vol. 239). Oxford University Press.
Hawkins, B. A., & DeVries, P. J. (2009). Tropical niche conservatism and the species richness gradient of North American butterflies. Journal of Biogeography, 36(9), 1698-1711. https://doi.org/10.1111/j.1365-2699.2009.02119.x
Hawkins, B. A., & Lawton, J. H. (1995). Latitudinal gradients in butterfly body sizes: Is there a general pattern? Oecologia, 102(1), 31-36. https://doi.org/10.1007/BF00333307
Hayes, M. P., Hitchcock, G. E., Knock, R. I., Lucas, C. B. H., & Turner, E. C. (2019). Temperature and territoriality in the Duke of Burgundy butterfly, Hamearis lucina. Journal of Insect Conservation, 1-12. https://doi.org/10.1007/s10841-019-00166-6
Heikkilä, M., Mutanen, M., Wahlberg, N., Sihvonen, P., & Kaila, L. (2015). Elusive ditrysian phylogeny: An account of combining systematized morphology with molecular data (Lepidoptera). BMC Evolutionary Biology, 15(1), 1-27. https://doi.org/10.1186/s12862-015-0520-0
Heinrich, B., & Esch, H. (1994). Thermoregulation in bees. American Scientist, 82(2), 164-170.
Higgins, J. K., MacLean, H. J., Buckley, L. B., & Kingsolver, J. G. (2014). Geographic differences and microevolutionary changes in thermal sensitivity of butterfly larvae in response to climate. Functional Ecology, 28(4), 982-989. https://doi.org/10.1111/1365-2435.12218
Huey, R. B., Hertz, P. E., & Sinervo, B. (2003). Behavioural drive versus behavioural inertia in evolution: A null model approach. The American Naturalist, 161(3), 357-366.
Janzen, D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101(919), 233-249. https://doi.org/10.1086/282487
Karl, I., Janowitz, S. A., & Fischer, K. (2008). Altitudinal life-history variation and thermal adaptation in the copper butterfly Lycaena tityrus. Oikos, 117(5), 778-788.
Kellermann, V., Hoffmann, A. A., Overgaard, J., Loeschcke, V., & Sgrò, C. M. (2018). Plasticity for desiccation tolerance across Drosophila species is affected by phylogeny and climate in complex ways. Proceedings of the Royal Society B: Biological Sciences, 285(1874), 20180048.
Kellermann, V., Loeschcke, V., Hoffmann, A. A., Kristensen, T. N., Fløjgaard, C., David, J. R., Svenning, J. C. & Overgaard, J. (2012). Phylogenetic constraints in key functional traits behind species' climate niches: Patterns of desiccation and cold resistance across 95 Drosophila species. Evolution, 66(11), 3377-3389.
Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W., & Freschet, G. T. (2013). Contrasting effects of plant inter-and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology, 27(5), 1254-1261. https://doi.org/10.1111/1365-2435.12116
Kingsolver, J. G. (1983). Ecological significance of flight activity in Colias butterflies: Implications for reproductive strategy and population structure. Ecology, 64(3), 546-551. https://doi.org/10.2307/1939974
Kingsolver, J. G., & Buckley, L. B. (2018). How do phenology, plasticity, and evolution determine the fitness consequences of climate change for montane butterflies? Evolutionary Applications, 11, 1231-1244. https://doi.org/10.1111/eva.12618
Kingsolver, J. G., & Watt, W. B. (1984). Mechanistic constraints and optimality models: Thermoregulatory strategies in Colias butterflies. Ecology, 65(6), 1835-1839. https://doi.org/10.2307/1937780
Kleckova, I., & Klecka, J. (2016). Facing the heat: Thermoregulation and behaviour of lowland species of a cold-dwelling butterfly genus, Erebia. PLoS ONE, 11(3), e0150393. https://doi.org/10.1371/journal.pone.0150393
Krishna, A., Nie, X., Warren, A. D., Llorente-Bousquets, J. E., Briscoe, A. D., & Lee, J. (2020). Infrared optical and thermal properties of microstructures in butterfly wings. Proceedings of the National Academy of Sciences, 117(3), 1566-1572. https://doi.org/10.1073/pnas.1906356117
Kunte, K. (2008). Competition and species diversity: Removal of dominant species increases diversity in Costa Rican butterfly communities. Oikos, 117(1), 69-76. https://doi.org/10.1111/j.2007.0030-1299.16125.x
Löwenberg-Neto, P., de Carvalho, C. J., & Hawkins, B. A. (2011). Tropical niche conservatism as a historical narrative hypothesis for the Neotropics: A case study using the fly family Muscidae. Journal of Biogeography, 38(10), 1936-1947. https://doi.org/10.1111/j.1365-2699.2011.02540.x
May, M. L. (1976). Thermoregulation and adaptation to temperature in dragonflies (Odonata: Anisoptera). Ecological Monographs, 46(1), 1-32. https://doi.org/10.2307/1942392
May, M. L. (1998). Body temperature regulation in a late-season dragonfly, Sympetrum vicinum (Odonata: Libellulidae). International Journal of Odonatology, 1(1), 1-13. https://doi.org/10.1080/13887890.1998.9748090
Mazzotti, F. J., Cherkiss, M. S., Parry, M., Beauchamp, J., Rochford, M., Smith, B., Hart, K., & Brandt, L. A. (2016). Large reptiles and cold temperatures: Do extreme cold spells set distributional limits for tropical reptiles in Florida? Ecosphere, 7(8). https://doi.org/10.1002/ecs2.1439
Menéndez, R., González-Megías, A., Lewis, O. T., Shaw, M. R., & Thomas, C. D. (2008). Escape from natural enemies during climate-driven range expansion: A case study. Ecological Entomology, 33(3), 413-421. https://doi.org/10.1111/j.1365-2311.2008.00985.x
Metzger, M. J., Bunce, R. G., Jongman, R. H., Sayre, R., Trabucco, A., & Zomer, R. (2013). A high-resolution bioclimate map of the world: A unifying framework for global biodiversity research and monitoring. Global Ecology and Biogeography, 22(5), 630-638. https://doi.org/10.1111/geb.12022
Mitchell, K. A., Sinclair, B. J., & Terblanche, J. S. (2013). Ontogenetic variation in cold tolerance plasticity in Drosophila: Is the Bogert effect bogus? Naturwissenschaften, 100(3), 281-284. https://doi.org/10.1007/s00114-013-1023-8
Muñoz, M. M., & Bodensteiner, B. L. (2019). Janzen’s hypothesis meets the Bogert effect: Connecting climate variation, thermoregulatory behaviour, and rates of physiological evolution. Integrative Organismal Biology, 1(1), oby002.
Muñoz, M. M., & Losos, J. B. (2018). Thermoregulatory behaviour simultaneously promotes and forestalls evolution in a tropical lizard. The American Naturalist, 191(1), E15-E26.
Nielsen, M. G., & Watt, W. B. (1998). Behavioural fitness component effects of the alba polymorphism of Colias (Lepidoptera, Pieridae): Resource and time budget analysis. Functional Ecology, 12(1), 149-158.
O'brien, E. K., Higgie, M., Reynolds, A., Hoffmann, A. A., & Bridle, J. R. (2017). Testing for local adaptation and evolutionary potential along altitudinal gradients in rainforest Drosophila: Beyond laboratory estimates. Global Change Biology, 23(5), 1847-1860.
Orme, D. (2013). The caper package: Comparative analysis of phylogenetics and evolution in R. R Package Version, 5(2), 1-36.
Pelini, S. L., Dzurisin, J. D., Prior, K. M., Williams, C. M., Marsico, T. D., Sinclair, B. J., & Hellmann, J. J. (2009). Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. Proceedings of the National Academy of Sciences of the United States of America, 106(27), 11160-11165. https://doi.org/10.1073/pnas.0900284106
Pinkert, S., Brandl, R., & Zeuss, D. (2017). Colour luminosity of dragonfly assemblages across North America and Europe. Ecography, 40(9), 1110-1117.
Pinkert, S., Friess, N., Zeuss, D., Gossner, M. M., Brandl, R., & Brunzel, S. (2020). Mobility costs and energy uptake mediate the effects of morphological traits on species' distribution and abundance. Ecology, 101(10), e03121. https://doi.org/10.1002/ecy.3121
Pohlman, C. L., Turton, S. M., & Goosem, M. (2009). Temporal variation in microclimatic edge effects near powerlines, highways and streams in Australian tropical rainforest. Agricultural and Forest Meteorology, 149(1), 84-95. https://doi.org/10.1016/j.agrformet.2008.07.003
Pollard, E. (1977). A method for assessing changes in the abundance of butterflies. Biological Conservation, 12(2), 115-134. https://doi.org/10.1016/0006-3207(77)90065-9
R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Rawlins, J. E. (1980). Thermoregulation by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). Ecology, 61(2), 345-357. https://doi.org/10.2307/1935193
Regier, J. C., Mitter, C., Zwick, A., Bazinet, A. L., Cummings, M. P., Kawahara, A. Y., Sohn, J.-C., Zwickl, D. J., Cho, S., Davis, D. R., Baixeras, J., Brown, J., Parr, C., Weller, S., Lees, D. C., & Mitter, K. T. (2013). A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS ONE, 8(3), e58568. https://doi.org/10.1371/journal.pone.0058568
Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217-223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
Scheffers, B. R., & Williams, S. E. (2018). Tropical mountain passes are out of reach-but not for arboreal species. Frontiers in Ecology and the Environment, 16(2), 101-108. https://doi.org/10.1002/fee.1764
Sheldon, K. S., Huey, R. B., Kaspari, M., & Sanders, N. J. (2018). Fifty years of mountain passes: A perspective on Dan Janzen’s Classic Article. The American Naturalist, 191(5). https://doi.org/10.1086/697046
Sømme, L. (1989). Adaptations of terrestrial arthropods to the alpine environment. Biological Reviews, 64(4), 367-407. https://doi.org/10.1111/j.1469-185X.1989.tb00681.x
Spence, A. R., & Tingley, M. W. (2020). The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography, 43(11), 1571-1590. https://doi.org/10.1111/ecog.05170
Spitzer, K., Novotny, V., Tonner, M., & Leps, J. (1993). Habitat preferences, distribution and seasonality of the butterflies (Lepidoptera, Papilionoidea) in a montane tropical rain forest, Vietnam. Journal of Biogeography, 20(1), 109-121. https://doi.org/10.2307/2845744
Stelbrink, P., Pinkert, S., Brunzel, S., Kerr, J., Wheat, C. W., Brandl, R., & Zeuss, D. (2019). Colour lightness of butterfly assemblages across North America and Europe. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-018-36761-x
Stone, G. N., & Willmer, P. G. (1989). Endothermy and temperature regulation in bees: A critique of ‘grab and stab’ measurement of body temperature. Journal of Experimental Biology, 143(1), 211-223. https://doi.org/10.1242/jeb.143.1.211
Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences, 111(15), 5610-5615. https://doi.org/10.1073/pnas.1316145111
Tsuji, J. S., Kingsolver, J. G., & Watt, W. B. (1986). Thermal physiological ecology of Colias butterflies in flight. Oecologia, 69(2), 161-170. https://doi.org/10.1007/BF00377616
Ummenhofer, C. C., & Meehl, G. A. (2017). Extreme weather and climate events with ecological relevance: A review. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1723), 20160135.
Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., Jung, V., & Messier, J. (2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27(4), 244-252. https://doi.org/10.1016/j.tree.2011.11.014
Von Humboldt, A. (1849). Aspects of nature, in different lands and different climates; with scientific elucidations. Lea and Blanchard.
Wang, H. Y., & Emmel, T. C. (1990). Migration and overwintering aggregations of nine danaine butterfly species in Taiwan (Nymphalidae). Journal of the Lepidopterists’ Society, 44, 216-228.
Wang, X., Liu, H., Gu, M. B., Boucek, R., Wu, Z. M., & Zhou, G. Y. (2016). Greater impacts from an extreme cold spell on tropical than temperate butterflies in southern China. Ecosphere, 7(5). https://doi.org/10.1002/ecs2.1315
Wenda, C., Xing, S., Nakamura, A., & Bonebrake, T. C. (2021). Data from: Morphological and behavioural differences facilitate tropical butterfly persistence in variable environments. Dryad Digital Repository, https://doi.org/10.5061/dryad.z8w9ghxcw
Wiens, J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19(12), 639-644. https://doi.org/10.1016/j.tree.2004.09.011
Wiens, J. J., & Graham, C. H. (2005). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519-539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
Wu, S.-H., & Zheng, D. (2001). Delineation of boundary between tropical/subtropical in the middle section for eco-geographic system of South China. Journal of Geographical Sciences, 11(1), 80-86. https://doi.org/10.1007/BF02837378
Xing, S., Cheng, W., Nakamura, A., Tang, C. C., Huang, S., Odell, E., Goodale, E., Goodale, U. M., & Bonebrake, T. C. (2018). Elevational clines in morphological traits of subtropical and tropical butterfly assemblages. Biological Journal of the Linnean Society, 123(3), 506-517. https://doi.org/10.1093/biolinnean/blx159
Zhu, H. (2013). Geographical elements of seed plants suggest the boundary of the tropical zone in China. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 16-22. https://doi.org/10.1016/j.palaeo.2013.04.007
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). In M. Gail, K. Krickeberg, J. M. Samet, A. Tsiatis, & W. Wong (Eds.), Mixed effects models and extensions in ecology with R. Spring Science and Business Media.