UV-Induced Nanoparticles-Formation, Properties and Their Potential Role in Origin of Life
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA MENDELU 2019_TP_009
Internal Grant Agency of Mendel University in Brno
LM2015043
CIISB research infrastructure funded by MEYS CR
19-03314S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000778
ERDF/ESF
PubMed
32759824
PubMed Central
PMC7466688
DOI
10.3390/nano10081529
PII: nano10081529
Knihovny.cz E-resources
- Keywords
- UV-induced nanoparticles, metal ions, nanoparticle-based world, nanozymes, origin of life, thiols,
- Publication type
- Journal Article MeSH
Inorganic nanoparticles might have played a vital role in the transition from inorganic chemistry to self-sustaining living systems. Such transition may have been triggered or controlled by processes requiring not only versatile catalysts but also suitable reaction surfaces. Here, experimental results showing that multicolor quantum dots might have been able to participate as catalysts in several specific and nonspecific reactions, relevant to the prebiotic chemistry are demonstrated. A very fast and easy UV-induced formation of ZnCd quantum dots (QDs) with a quantum yield of up to 47% was shown to occur 5 min after UV exposure of the solution containing Zn(II) and Cd(II) in the presence of a thiol capping agent. In addition to QDs formation, xanthine activity was observed in the solution. The role of solar radiation to induce ZnCd QDs formation was replicated during a stratospheric balloon flight.
See more in PubMed
Wei H., Wang E.K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013;42:6060–6093. doi: 10.1039/c3cs35486e. PubMed DOI
Wu J.J.X., Wang X.Y., Wang Q., Lou Z.P., Li S.R., Zhu Y.Y., Qin L., Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II) Chem. Soc. Rev. 2019;48:1004–1076. doi: 10.1039/C8CS00457A. PubMed DOI
Duan J.L., Song L.X., Zhan J.H. One-Pot synthesis of highly luminescent CdTe Quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res. 2009;2:61–68. doi: 10.1007/s12274-009-9004-0. DOI
Bagga K., Barchanski A., Intartaglia R., Dante S., Marotta R., Diaspro A., Sajti C.L., Brandi F. Laser-Assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes. Laser Phys. Lett. 2013;10:06560310. doi: 10.1088/1612-2011/10/6/065603. DOI
Nejdl L., Zitka J., Mravec F., Milosavljevic V., Zitka O., Kopel P., Adam V., Vaculovicova M. Real-Time monitoring of the UV-induced formation of quantum dots on a milliliter, microliter, and nanoliter scale. Microchim. Acta. 2017;184:1489–1497. doi: 10.1007/s00604-017-2149-8. DOI
Passos S.G.B., Freitas D.V., Dias J.M.M., Neto E.T., Navarro M. One-Pot electrochemical synthesis of CdTe quantum dots in cavity cell. Electrochim. Acta. 2016;190:689–694. doi: 10.1016/j.electacta.2016.01.016. DOI
Ribeiro R.T., Dias J.M.M., Pereira G.A., Freitas D.V., Monteiro M., Cabral Filho P.E., Raele R.A., Fontes A., Navarro M., Santos B.S. Electrochemical synthetic route for preparation of CdTe quantum-dots stabilized by positively or negatively charged ligands. Green Chem. 2013;15:1061–1066. doi: 10.1039/c3gc36990k. DOI
Chen L.C., Tseng Z.L., Chen S.Y., Yang S. An ultrasonic synthesis method for high-luminance perovskite quantum dots. Ceram. Int. 2017;43:16032–16035. doi: 10.1016/j.ceramint.2017.08.066. DOI
Zhou J., Yang Y., Zhang C.Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015;115:11669–11717. doi: 10.1021/acs.chemrev.5b00049. PubMed DOI
Vogel W., Urban J., Kundu M., Kulkarni S.K. Sphalerite-Wurtzite intermediates in nanocrystalline CdS. Langmuir. 1997;13:827–832. doi: 10.1021/la960426k. DOI
Sun M.Z., Xu L.G., Qu A.H., Zhao P., Hao T.T., Ma W., Hao C.L., Wen X.D., Colombari F.M., de Moura A.F., et al. Site-Selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 2018;10:821–830. doi: 10.1038/s41557-018-0083-y. PubMed DOI
Winkler W.C., Nahvi A., Roth A., Collins J.A., Breaker R.R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature. 2004;428:281–286. doi: 10.1038/nature02362. PubMed DOI
Walther R., Winther A.K., Fruergaard A.S., van den Akker W., Sorensen L., Nielsen S.M., Olesen M.T.J., Dai Y.T., Jeppesen H.S., Lamagni P., et al. Identification and directed development of non-organic catalysts with apparent pan-enzymatic mimicry into nanozymes for efficient prodrug conversion. Angew. Chem. Int. Ed. 2019;58:278–282. doi: 10.1002/anie.201812668. PubMed DOI
Prins L.J. Emergence of complex chemistry on an organic monolayer. Acc. Chem. Res. 2015;48:1920–1928. doi: 10.1021/acs.accounts.5b00173. PubMed DOI
Vasas V., Szathmary E., Santos M. Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life. Proc. Natl. Acad. Sci. USA. 2010;107:1470–1475. doi: 10.1073/pnas.0912628107. PubMed DOI PMC
Mulkidjanian A.Y. On the origin of life in the Zinc world: I. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol. Direct. 2009;4:38. doi: 10.1186/1745-6150-4-26. PubMed DOI PMC
Deduve C. The Thioester World. Editions Frontieres; Dreux, France: 1992. pp. 1–20.
Gilbert W. Origin of life—The RNA world. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI
Segre D., Ben-Eli D., Deamer D.W., Lancet D. The lipid world. Orig. Life Evol. Biosph. 2001;31:119–145. doi: 10.1023/A:1006746807104. PubMed DOI
Zhang X.V., Martin S.T. Driving parts of Krebs cycle in reverse through mineral photochemistry. J. Am. Chem. Soc. 2006;128:16032–16033. doi: 10.1021/ja066103k. PubMed DOI
Evans M.C.W., Buchanan B.B., Arnon D.I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA. 1966;55:928–934. doi: 10.1073/pnas.55.4.928. PubMed DOI PMC
Wachtershauser G. Chemoautotrophic Origin of Life: The Iron-Sulfur World Hypothesis. Springer; Berlin, Germany: 2010. pp. 1–35. DOI
Lazcano A., Miller S.L. The origin and early evolution of life: Prebiotic chemistry, the pre-RNA world, and time. Cell. 1996;85:793–798. doi: 10.1016/S0092-8674(00)81263-5. PubMed DOI
Liu X., Gao H., Ward J.E., Liu X., Yin B., Fu T., Chen J., Lovley D.R., Yao J. Power generation from ambient humidity using protein nanowires. Nature. 2020;578 doi: 10.1038/s41586-020-2010-9. PubMed DOI
Tilley R.D., Cheong S. Earthworms lit with quantum dots. Nat. Nanotechnol. 2013;8:6–7. PubMed
Whittet D.C.B. Is extraterrestrial organic matter relevant to the origin of life on earth? Orig. Life Evol. Biosph. 1997;27:249–262. doi: 10.1023/A:1006534500363. PubMed DOI
Holland H.D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B Biol. Sci. 2006;361:903–915. doi: 10.1098/rstb.2006.1838. PubMed DOI PMC
Gaillard F., Scaillet B. A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 2014;403:307–316. doi: 10.1016/j.epsl.2014.07.009. DOI
Pastorek A., Hrncirova J., Jankovic L., Nejdl L., Civis S., Ivanek O., Shestivska V., Knizek A., Kubelik P., Sponer J., et al. Prebiotic synthesis at impact craters: The role of Fe-clays and iron meteorites. Chem. Commun. 2019;55:10563–10566. doi: 10.1039/C9CC04627E. PubMed DOI
Vazquez G.A., Leitherer C. Optimization of Starburst99 for intermediate-age and old stellar populations. Astrophys. J. 2005;621:695–717. doi: 10.1086/427866. DOI
Cockell C.S. Biological effects of high ultraviolet radiation on early Earth—A theoretical evaluation. J. Theor. Biol. 1998;193:717–729. doi: 10.1006/jtbi.1998.0738. PubMed DOI
Bonfio C., Valer L., Scintilla S., Shah S., Evans D.J., Jin L., Szostak J.W., Sasselov D.D., Sutherland J.D., Mansy S.S. UV-light-driven prebiotic synthesis of iron-sulfur clusters. Nat. Chem. 2017;9:1229–1234. doi: 10.1038/nchem.2817. PubMed DOI PMC
Westall F. Early Life on Earth: The Ancient Fossil Record. Volume 305. Springer; Dordrecht, The Netherlands: 2004. pp. 287–316.
Cooper G.W., Onwo W.M., Cronin J.R. Alkyl phosphonic-acids and sulfonic-acids in the Murchison meteorite. Geochim. Cosmochim. Acta. 1992;56:4109–4115. doi: 10.1016/0016-7037(92)90023-C. PubMed DOI
Gorrell I.B., Wang L.M., Marks A.J., Bryant D.E., Bouillot F., Goddard A., Heard D.E., Kee T.P. On the origin of the Murchison meteorite phosphonates. Implications for pre-biotic chemistry. Chem. Commun. 2006:1643–1645. doi: 10.1039/b517497j. PubMed DOI
Yamagata Y., Watanabe H., Saitoh M., Namba T. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature. 1991;352:516–519. doi: 10.1038/352516a0. PubMed DOI
Kuznetsova Y.V., Rempel A.A. Size, zeta potential, and semiconductor properties of hybrid CdS-ZnS nanoparticles in a stable aqueous colloidal solution. Russ. J. Phys. Chem. A. 2017;91:1105–1108. doi: 10.1134/S0036024417060139. DOI
Medintz I.L., Uyeda H.T., Goldman E.R., Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005;4:435–446. doi: 10.1038/nmat1390. PubMed DOI
Campbell C.T. The energetics of supported metal nanoparticles: Relationships to sintering rates and catalytic activity. Acc. Chem. Res. 2013;46:1712–1719. doi: 10.1021/ar3003514. PubMed DOI
Cao S.W., Tao F., Tang Y., Li Y.T., Yu J.G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016;45:4747–4765. doi: 10.1039/C6CS00094K. PubMed DOI
Pizzarello S., Williams L.B., Lehman J., Holland G.P., Yarger J.L. Abundant ammonia in primitive asteroids and the case for a possible exobiology. Proc. Natl. Acad. Sci. USA. 2011;108:4303–4306. doi: 10.1073/pnas.1014961108. PubMed DOI PMC
Bickley R.I., Vishwanathan V. Photocatalytically induced fixation of molecular nitrogen by near UV-radiation. Nature. 1979;280:306–308. doi: 10.1038/280306a0. DOI
Schoonen M.A.A., Xu Y. Nitrogen reduction under hydrothermal vent conditions: Implications for the prebiotic synthesis of C-H-O-N compounds. Astrobiology. 2001;1:133–142. doi: 10.1089/153110701753198909. PubMed DOI
Pullerits T., Sundstrom V. Photosynthetic light-harvesting pigment-protein complexes: Toward understanding how and why. Acc. Chem. Res. 1996;29:381–389. doi: 10.1021/ar950110o. DOI
Lv H.J., Wang C.C., Li G.C., Burke R., Krauss T.D., Gao Y.L., Eisenberg R. Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. Proc. Natl. Acad. Sci. USA. 2017;114:11297–11302. doi: 10.1073/pnas.1712325114. PubMed DOI PMC
Mulkidjanian A.Y., Galperin M.Y. On the origin of life in the Zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biology Direct. 2009;4:1–37. doi: 10.1186/1745-6150-4-27. PubMed DOI PMC
Skalickova S., Zitka O., Nejdl L., Krizkova S., Sochor J., Janu L., Ryvolova M., Hynek D., Zidkova J., Zidek V., et al. Study of interaction between metallothionein and CdTe quantum dots. Chromatographia. 2013;76:345–353. doi: 10.1007/s10337-013-2418-6. DOI
Nejdl L., Hynek D., Adam V., Vaculovicova M. Capillary electrophoresis-driven synthesis of water-soluble CdTe quantum dots in nanoliter scale. Nanotechnology. 2018;29:6. doi: 10.1088/1361-6528/aaabd4. PubMed DOI
Nejdl L., Skalickova S., Kudr J., Ruttkay-Nedecky B., Nguyen H.V., Rodrigo M.A.M., Kopel P., Konecna M., Adam V., Kizek R. Interaction of E6 gene from Human Papilloma Virus 16 (HPV-16) with CdS quantum dots. Chromatographia. 2014;77:1433–1439. doi: 10.1007/s10337-014-2734-5. DOI
Litwinienko G., Beckwith A.L.J., Ingold K.U. The frequently overlooked importance of solvent in free radical syntheses. Chem. Soc. Rev. 2011;40:2157–2163. doi: 10.1039/c1cs15007c. PubMed DOI
Mota-Morales J.D., Sanchez-Leija R.J., Carranza A., Pojman J.A., del Monte F., Luna-Barcenas G. Free-Radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Prog. Polym. Sci. 2018;78:139–153. doi: 10.1016/j.progpolymsci.2017.09.005. DOI
Nomoto A., Higuchi Y., Kobiki Y., Ogawa A. Synthesis of selenium compounds by free radical addition based on visible-light-activated Se-Se bond cleavage. Mini Rev. Med. Chem. 2013;13:814–823. doi: 10.2174/1389557511313060004. PubMed DOI
Aslam U., Rao V.G., Chavez S., Linic S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 2018;1:656–665. doi: 10.1038/s41929-018-0138-x. DOI
Cavosie A.J., Valley J.W., Wilde S.A. Magmatic delta O-18 in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 2005;235:663–681. doi: 10.1016/j.epsl.2005.04.028. DOI
Catling D.C., Zahnle K.J. The Archean atmosphere. Sci. Adv. 2020;6:16. doi: 10.1126/sciadv.aax1420. PubMed DOI PMC
Sleep N.H., Zahnle K. Refugia from asteroid impacts on early Mars and the early Earth. J. Geophys. Res. Planets. 1998;103:28529–28544. doi: 10.1029/98JE01809. DOI
Mojzsis S.J., Arrhenius G., McKeegan K.D., Harrison T.M., Nutman A.P., Friend C.R.L. Evidence for life on Earth before 3800 million years ago. Nature. 1996;384:55–59. doi: 10.1038/384055a0. PubMed DOI
Tashiro T., Ishida A., Hori M., Igisu M., Koike M., Mejean P., Takahata N., Sano Y., Komiya T. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature. 2017;549:516–518. doi: 10.1038/nature24019. PubMed DOI
Bell E.A., Boehnke P., Harrison T.M., Mao W.L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. USA. 2015;112:14518–14521. doi: 10.1073/pnas.1517557112. PubMed DOI PMC
Dodd M.S., Papineau D., Grenne T., Slack J.F., Rittner M., Pirajno F., O’Neil J., Little C.T.S. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature. 2017;543:60–64. doi: 10.1038/nature21377. PubMed DOI
Nishimura M., Sandell E.B. Zinc in meteorites. Geochim. Cosmochim. Acta. 1964;28:1055–1079. doi: 10.1016/0016-7037(64)90060-2. DOI
Schmitt R.A., Goles G.G., Smith R.H., Osborn T.W. Elemental abundances in stone meteorites. Meteoritics. 1972;7:131–213. doi: 10.1111/j.1945-5100.1972.tb00433.x. DOI
Kruijer T.S., Sprung P., Kleine T., Leya I., Wieler R. The abundance and isotopic composition of Cd in iron meteorites. Meteorit. Planet. Sci. 2013;48:2597–2607. doi: 10.1111/maps.12240. DOI
Schwenzer S.P., Abramov O., Allen C.C., Bridges J.C., Clifford S.M., Filiberto J., Kring D.A., Lasue J., McGovern P.J., Newsom H.E., et al. Gale Crater: Formation and post-impact hydrous environments. Planet. Space Sci. 2012;70:84–95. doi: 10.1016/j.pss.2012.05.014. DOI
Berger J.A., Schmidt M.E., Gellert R., Boyd N.I., Desouza E.D., Flemming R.L., Izawa M.R.M., Ming D.W., Perrett G.M., Rampe E.B., et al. Zinc and germanium in the sedimentary rocks of Gale Crater on Mars indicate hydrothermal enrichment followed by diagenetic fractionation. J. Geophys. Res. Planets. 2017;122:1747–1772. doi: 10.1002/2017JE005290. DOI
Heinz J., Schulze-Makuch D. Thiophenes on Mars: Biotic or abiotic origin? Astrobiology. 2020;20:552–561. doi: 10.1089/ast.2019.2139. PubMed DOI
Cody G.D. Transition metal sulfides and the origins of metabolism. Annu. Rev. Earth Planet. Sci. 2004;32:569–599. doi: 10.1146/annurev.earth.32.101802.120225. DOI
McCollom T.M. Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface. In: Hazen R.M., Jones A.P., Baross J.A., editors. Carbon in Earth. Volume 75. Mineralogical Soc Amer & Geochemical Soc; Chantilly, France: 2013. pp. 467–494.
McCollom T.M. Miller-Urey and beyond: What have we learned about prebiotic organic synthesis reactions in the past 60 years? Annu. Rev. Earth Planet. Sci. 2013;41:207–229. doi: 10.1146/annurev-earth-040610-133457. DOI
Ding K., Seyfried W.E., Zhang Z., Tivey M.K., Von Damm K.L., Bradley A.M. The in situ pH of hydrothermal fluids at mid-ocean ridges. Earth Planet. Sci. Lett. 2005;237:167–174. doi: 10.1016/j.epsl.2005.04.041. DOI
Sekine Y., Shibuya T., Postberg F., Hsu H.W., Suzuki K., Masaki Y., Kuwatani T., Mori M., Hong P.K., Yoshizaki M., et al. High-Temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 2015;6:8. doi: 10.1038/ncomms9604. PubMed DOI PMC
Ritson D.J., Mojzsis S.J., Sutherland J.D. Supply of phosphate to early Earth by photogeochemistry after meteoritic weathering. Nat. Geosci. 2020;13:6. doi: 10.1038/s41561-020-0556-7. PubMed DOI PMC
Saladino R., Botta G., Pino S., Costanzo G., Di Mauro E. Genetics first or metabolism first? The formamide clue. Chem. Soc. Rev. 2012;41:5526–5565. doi: 10.1039/c2cs35066a. PubMed DOI
Enhanced UV-C resistance through light-activated zinc-cysteine complex formation