• This record comes from PubMed

UV-Induced Nanoparticles-Formation, Properties and Their Potential Role in Origin of Life

. 2020 Aug 04 ; 10 (8) : . [epub] 20200804

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IGA MENDELU 2019_TP_009 Internal Grant Agency of Mendel University in Brno
LM2015043 CIISB research infrastructure funded by MEYS CR
19-03314S Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000778 ERDF/ESF

Inorganic nanoparticles might have played a vital role in the transition from inorganic chemistry to self-sustaining living systems. Such transition may have been triggered or controlled by processes requiring not only versatile catalysts but also suitable reaction surfaces. Here, experimental results showing that multicolor quantum dots might have been able to participate as catalysts in several specific and nonspecific reactions, relevant to the prebiotic chemistry are demonstrated. A very fast and easy UV-induced formation of ZnCd quantum dots (QDs) with a quantum yield of up to 47% was shown to occur 5 min after UV exposure of the solution containing Zn(II) and Cd(II) in the presence of a thiol capping agent. In addition to QDs formation, xanthine activity was observed in the solution. The role of solar radiation to induce ZnCd QDs formation was replicated during a stratospheric balloon flight.

See more in PubMed

Wei H., Wang E.K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013;42:6060–6093. doi: 10.1039/c3cs35486e. PubMed DOI

Wu J.J.X., Wang X.Y., Wang Q., Lou Z.P., Li S.R., Zhu Y.Y., Qin L., Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II) Chem. Soc. Rev. 2019;48:1004–1076. doi: 10.1039/C8CS00457A. PubMed DOI

Duan J.L., Song L.X., Zhan J.H. One-Pot synthesis of highly luminescent CdTe Quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res. 2009;2:61–68. doi: 10.1007/s12274-009-9004-0. DOI

Bagga K., Barchanski A., Intartaglia R., Dante S., Marotta R., Diaspro A., Sajti C.L., Brandi F. Laser-Assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes. Laser Phys. Lett. 2013;10:06560310. doi: 10.1088/1612-2011/10/6/065603. DOI

Nejdl L., Zitka J., Mravec F., Milosavljevic V., Zitka O., Kopel P., Adam V., Vaculovicova M. Real-Time monitoring of the UV-induced formation of quantum dots on a milliliter, microliter, and nanoliter scale. Microchim. Acta. 2017;184:1489–1497. doi: 10.1007/s00604-017-2149-8. DOI

Passos S.G.B., Freitas D.V., Dias J.M.M., Neto E.T., Navarro M. One-Pot electrochemical synthesis of CdTe quantum dots in cavity cell. Electrochim. Acta. 2016;190:689–694. doi: 10.1016/j.electacta.2016.01.016. DOI

Ribeiro R.T., Dias J.M.M., Pereira G.A., Freitas D.V., Monteiro M., Cabral Filho P.E., Raele R.A., Fontes A., Navarro M., Santos B.S. Electrochemical synthetic route for preparation of CdTe quantum-dots stabilized by positively or negatively charged ligands. Green Chem. 2013;15:1061–1066. doi: 10.1039/c3gc36990k. DOI

Chen L.C., Tseng Z.L., Chen S.Y., Yang S. An ultrasonic synthesis method for high-luminance perovskite quantum dots. Ceram. Int. 2017;43:16032–16035. doi: 10.1016/j.ceramint.2017.08.066. DOI

Zhou J., Yang Y., Zhang C.Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015;115:11669–11717. doi: 10.1021/acs.chemrev.5b00049. PubMed DOI

Vogel W., Urban J., Kundu M., Kulkarni S.K. Sphalerite-Wurtzite intermediates in nanocrystalline CdS. Langmuir. 1997;13:827–832. doi: 10.1021/la960426k. DOI

Sun M.Z., Xu L.G., Qu A.H., Zhao P., Hao T.T., Ma W., Hao C.L., Wen X.D., Colombari F.M., de Moura A.F., et al. Site-Selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 2018;10:821–830. doi: 10.1038/s41557-018-0083-y. PubMed DOI

Winkler W.C., Nahvi A., Roth A., Collins J.A., Breaker R.R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature. 2004;428:281–286. doi: 10.1038/nature02362. PubMed DOI

Walther R., Winther A.K., Fruergaard A.S., van den Akker W., Sorensen L., Nielsen S.M., Olesen M.T.J., Dai Y.T., Jeppesen H.S., Lamagni P., et al. Identification and directed development of non-organic catalysts with apparent pan-enzymatic mimicry into nanozymes for efficient prodrug conversion. Angew. Chem. Int. Ed. 2019;58:278–282. doi: 10.1002/anie.201812668. PubMed DOI

Prins L.J. Emergence of complex chemistry on an organic monolayer. Acc. Chem. Res. 2015;48:1920–1928. doi: 10.1021/acs.accounts.5b00173. PubMed DOI

Vasas V., Szathmary E., Santos M. Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life. Proc. Natl. Acad. Sci. USA. 2010;107:1470–1475. doi: 10.1073/pnas.0912628107. PubMed DOI PMC

Mulkidjanian A.Y. On the origin of life in the Zinc world: I. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol. Direct. 2009;4:38. doi: 10.1186/1745-6150-4-26. PubMed DOI PMC

Deduve C. The Thioester World. Editions Frontieres; Dreux, France: 1992. pp. 1–20.

Gilbert W. Origin of life—The RNA world. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI

Segre D., Ben-Eli D., Deamer D.W., Lancet D. The lipid world. Orig. Life Evol. Biosph. 2001;31:119–145. doi: 10.1023/A:1006746807104. PubMed DOI

Zhang X.V., Martin S.T. Driving parts of Krebs cycle in reverse through mineral photochemistry. J. Am. Chem. Soc. 2006;128:16032–16033. doi: 10.1021/ja066103k. PubMed DOI

Evans M.C.W., Buchanan B.B., Arnon D.I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA. 1966;55:928–934. doi: 10.1073/pnas.55.4.928. PubMed DOI PMC

Wachtershauser G. Chemoautotrophic Origin of Life: The Iron-Sulfur World Hypothesis. Springer; Berlin, Germany: 2010. pp. 1–35. DOI

Lazcano A., Miller S.L. The origin and early evolution of life: Prebiotic chemistry, the pre-RNA world, and time. Cell. 1996;85:793–798. doi: 10.1016/S0092-8674(00)81263-5. PubMed DOI

Liu X., Gao H., Ward J.E., Liu X., Yin B., Fu T., Chen J., Lovley D.R., Yao J. Power generation from ambient humidity using protein nanowires. Nature. 2020;578 doi: 10.1038/s41586-020-2010-9. PubMed DOI

Tilley R.D., Cheong S. Earthworms lit with quantum dots. Nat. Nanotechnol. 2013;8:6–7. PubMed

Whittet D.C.B. Is extraterrestrial organic matter relevant to the origin of life on earth? Orig. Life Evol. Biosph. 1997;27:249–262. doi: 10.1023/A:1006534500363. PubMed DOI

Holland H.D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B Biol. Sci. 2006;361:903–915. doi: 10.1098/rstb.2006.1838. PubMed DOI PMC

Gaillard F., Scaillet B. A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 2014;403:307–316. doi: 10.1016/j.epsl.2014.07.009. DOI

Pastorek A., Hrncirova J., Jankovic L., Nejdl L., Civis S., Ivanek O., Shestivska V., Knizek A., Kubelik P., Sponer J., et al. Prebiotic synthesis at impact craters: The role of Fe-clays and iron meteorites. Chem. Commun. 2019;55:10563–10566. doi: 10.1039/C9CC04627E. PubMed DOI

Vazquez G.A., Leitherer C. Optimization of Starburst99 for intermediate-age and old stellar populations. Astrophys. J. 2005;621:695–717. doi: 10.1086/427866. DOI

Cockell C.S. Biological effects of high ultraviolet radiation on early Earth—A theoretical evaluation. J. Theor. Biol. 1998;193:717–729. doi: 10.1006/jtbi.1998.0738. PubMed DOI

Bonfio C., Valer L., Scintilla S., Shah S., Evans D.J., Jin L., Szostak J.W., Sasselov D.D., Sutherland J.D., Mansy S.S. UV-light-driven prebiotic synthesis of iron-sulfur clusters. Nat. Chem. 2017;9:1229–1234. doi: 10.1038/nchem.2817. PubMed DOI PMC

Westall F. Early Life on Earth: The Ancient Fossil Record. Volume 305. Springer; Dordrecht, The Netherlands: 2004. pp. 287–316.

Cooper G.W., Onwo W.M., Cronin J.R. Alkyl phosphonic-acids and sulfonic-acids in the Murchison meteorite. Geochim. Cosmochim. Acta. 1992;56:4109–4115. doi: 10.1016/0016-7037(92)90023-C. PubMed DOI

Gorrell I.B., Wang L.M., Marks A.J., Bryant D.E., Bouillot F., Goddard A., Heard D.E., Kee T.P. On the origin of the Murchison meteorite phosphonates. Implications for pre-biotic chemistry. Chem. Commun. 2006:1643–1645. doi: 10.1039/b517497j. PubMed DOI

Yamagata Y., Watanabe H., Saitoh M., Namba T. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature. 1991;352:516–519. doi: 10.1038/352516a0. PubMed DOI

Kuznetsova Y.V., Rempel A.A. Size, zeta potential, and semiconductor properties of hybrid CdS-ZnS nanoparticles in a stable aqueous colloidal solution. Russ. J. Phys. Chem. A. 2017;91:1105–1108. doi: 10.1134/S0036024417060139. DOI

Medintz I.L., Uyeda H.T., Goldman E.R., Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005;4:435–446. doi: 10.1038/nmat1390. PubMed DOI

Campbell C.T. The energetics of supported metal nanoparticles: Relationships to sintering rates and catalytic activity. Acc. Chem. Res. 2013;46:1712–1719. doi: 10.1021/ar3003514. PubMed DOI

Cao S.W., Tao F., Tang Y., Li Y.T., Yu J.G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016;45:4747–4765. doi: 10.1039/C6CS00094K. PubMed DOI

Pizzarello S., Williams L.B., Lehman J., Holland G.P., Yarger J.L. Abundant ammonia in primitive asteroids and the case for a possible exobiology. Proc. Natl. Acad. Sci. USA. 2011;108:4303–4306. doi: 10.1073/pnas.1014961108. PubMed DOI PMC

Bickley R.I., Vishwanathan V. Photocatalytically induced fixation of molecular nitrogen by near UV-radiation. Nature. 1979;280:306–308. doi: 10.1038/280306a0. DOI

Schoonen M.A.A., Xu Y. Nitrogen reduction under hydrothermal vent conditions: Implications for the prebiotic synthesis of C-H-O-N compounds. Astrobiology. 2001;1:133–142. doi: 10.1089/153110701753198909. PubMed DOI

Pullerits T., Sundstrom V. Photosynthetic light-harvesting pigment-protein complexes: Toward understanding how and why. Acc. Chem. Res. 1996;29:381–389. doi: 10.1021/ar950110o. DOI

Lv H.J., Wang C.C., Li G.C., Burke R., Krauss T.D., Gao Y.L., Eisenberg R. Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. Proc. Natl. Acad. Sci. USA. 2017;114:11297–11302. doi: 10.1073/pnas.1712325114. PubMed DOI PMC

Mulkidjanian A.Y., Galperin M.Y. On the origin of life in the Zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biology Direct. 2009;4:1–37. doi: 10.1186/1745-6150-4-27. PubMed DOI PMC

Skalickova S., Zitka O., Nejdl L., Krizkova S., Sochor J., Janu L., Ryvolova M., Hynek D., Zidkova J., Zidek V., et al. Study of interaction between metallothionein and CdTe quantum dots. Chromatographia. 2013;76:345–353. doi: 10.1007/s10337-013-2418-6. DOI

Nejdl L., Hynek D., Adam V., Vaculovicova M. Capillary electrophoresis-driven synthesis of water-soluble CdTe quantum dots in nanoliter scale. Nanotechnology. 2018;29:6. doi: 10.1088/1361-6528/aaabd4. PubMed DOI

Nejdl L., Skalickova S., Kudr J., Ruttkay-Nedecky B., Nguyen H.V., Rodrigo M.A.M., Kopel P., Konecna M., Adam V., Kizek R. Interaction of E6 gene from Human Papilloma Virus 16 (HPV-16) with CdS quantum dots. Chromatographia. 2014;77:1433–1439. doi: 10.1007/s10337-014-2734-5. DOI

Litwinienko G., Beckwith A.L.J., Ingold K.U. The frequently overlooked importance of solvent in free radical syntheses. Chem. Soc. Rev. 2011;40:2157–2163. doi: 10.1039/c1cs15007c. PubMed DOI

Mota-Morales J.D., Sanchez-Leija R.J., Carranza A., Pojman J.A., del Monte F., Luna-Barcenas G. Free-Radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Prog. Polym. Sci. 2018;78:139–153. doi: 10.1016/j.progpolymsci.2017.09.005. DOI

Nomoto A., Higuchi Y., Kobiki Y., Ogawa A. Synthesis of selenium compounds by free radical addition based on visible-light-activated Se-Se bond cleavage. Mini Rev. Med. Chem. 2013;13:814–823. doi: 10.2174/1389557511313060004. PubMed DOI

Aslam U., Rao V.G., Chavez S., Linic S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 2018;1:656–665. doi: 10.1038/s41929-018-0138-x. DOI

Cavosie A.J., Valley J.W., Wilde S.A. Magmatic delta O-18 in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 2005;235:663–681. doi: 10.1016/j.epsl.2005.04.028. DOI

Catling D.C., Zahnle K.J. The Archean atmosphere. Sci. Adv. 2020;6:16. doi: 10.1126/sciadv.aax1420. PubMed DOI PMC

Sleep N.H., Zahnle K. Refugia from asteroid impacts on early Mars and the early Earth. J. Geophys. Res. Planets. 1998;103:28529–28544. doi: 10.1029/98JE01809. DOI

Mojzsis S.J., Arrhenius G., McKeegan K.D., Harrison T.M., Nutman A.P., Friend C.R.L. Evidence for life on Earth before 3800 million years ago. Nature. 1996;384:55–59. doi: 10.1038/384055a0. PubMed DOI

Tashiro T., Ishida A., Hori M., Igisu M., Koike M., Mejean P., Takahata N., Sano Y., Komiya T. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature. 2017;549:516–518. doi: 10.1038/nature24019. PubMed DOI

Bell E.A., Boehnke P., Harrison T.M., Mao W.L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. USA. 2015;112:14518–14521. doi: 10.1073/pnas.1517557112. PubMed DOI PMC

Dodd M.S., Papineau D., Grenne T., Slack J.F., Rittner M., Pirajno F., O’Neil J., Little C.T.S. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature. 2017;543:60–64. doi: 10.1038/nature21377. PubMed DOI

Nishimura M., Sandell E.B. Zinc in meteorites. Geochim. Cosmochim. Acta. 1964;28:1055–1079. doi: 10.1016/0016-7037(64)90060-2. DOI

Schmitt R.A., Goles G.G., Smith R.H., Osborn T.W. Elemental abundances in stone meteorites. Meteoritics. 1972;7:131–213. doi: 10.1111/j.1945-5100.1972.tb00433.x. DOI

Kruijer T.S., Sprung P., Kleine T., Leya I., Wieler R. The abundance and isotopic composition of Cd in iron meteorites. Meteorit. Planet. Sci. 2013;48:2597–2607. doi: 10.1111/maps.12240. DOI

Schwenzer S.P., Abramov O., Allen C.C., Bridges J.C., Clifford S.M., Filiberto J., Kring D.A., Lasue J., McGovern P.J., Newsom H.E., et al. Gale Crater: Formation and post-impact hydrous environments. Planet. Space Sci. 2012;70:84–95. doi: 10.1016/j.pss.2012.05.014. DOI

Berger J.A., Schmidt M.E., Gellert R., Boyd N.I., Desouza E.D., Flemming R.L., Izawa M.R.M., Ming D.W., Perrett G.M., Rampe E.B., et al. Zinc and germanium in the sedimentary rocks of Gale Crater on Mars indicate hydrothermal enrichment followed by diagenetic fractionation. J. Geophys. Res. Planets. 2017;122:1747–1772. doi: 10.1002/2017JE005290. DOI

Heinz J., Schulze-Makuch D. Thiophenes on Mars: Biotic or abiotic origin? Astrobiology. 2020;20:552–561. doi: 10.1089/ast.2019.2139. PubMed DOI

Cody G.D. Transition metal sulfides and the origins of metabolism. Annu. Rev. Earth Planet. Sci. 2004;32:569–599. doi: 10.1146/annurev.earth.32.101802.120225. DOI

McCollom T.M. Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface. In: Hazen R.M., Jones A.P., Baross J.A., editors. Carbon in Earth. Volume 75. Mineralogical Soc Amer & Geochemical Soc; Chantilly, France: 2013. pp. 467–494.

McCollom T.M. Miller-Urey and beyond: What have we learned about prebiotic organic synthesis reactions in the past 60 years? Annu. Rev. Earth Planet. Sci. 2013;41:207–229. doi: 10.1146/annurev-earth-040610-133457. DOI

Ding K., Seyfried W.E., Zhang Z., Tivey M.K., Von Damm K.L., Bradley A.M. The in situ pH of hydrothermal fluids at mid-ocean ridges. Earth Planet. Sci. Lett. 2005;237:167–174. doi: 10.1016/j.epsl.2005.04.041. DOI

Sekine Y., Shibuya T., Postberg F., Hsu H.W., Suzuki K., Masaki Y., Kuwatani T., Mori M., Hong P.K., Yoshizaki M., et al. High-Temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 2015;6:8. doi: 10.1038/ncomms9604. PubMed DOI PMC

Ritson D.J., Mojzsis S.J., Sutherland J.D. Supply of phosphate to early Earth by photogeochemistry after meteoritic weathering. Nat. Geosci. 2020;13:6. doi: 10.1038/s41561-020-0556-7. PubMed DOI PMC

Saladino R., Botta G., Pino S., Costanzo G., Di Mauro E. Genetics first or metabolism first? The formamide clue. Chem. Soc. Rev. 2012;41:5526–5565. doi: 10.1039/c2cs35066a. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...