UV-induced Zn:Cd/S quantum dots in-situ formed in the presence of thiols for sensitive and selective fluorescence detection of thiols
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34226580
PubMed Central
PMC8257596
DOI
10.1038/s41598-021-93137-4
PII: 10.1038/s41598-021-93137-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this work, we explored a new approach to a simple and sensitive fluorescence detection of thiols. The approach takes advantage of an in-situ formation of UV light-induced fluorescent nanoparticles (ZnCd/S quantum dots), while utilizing the thiol group of the analyte as a capping agent. The selectivity is ensured by the selective isolation of the thiol analyte by a polydopamine molecularly imprinted polymeric (MIP) layer. Based on this approach, a method for determination of thiols was designed. Key experimental parameters were optimized, including those of molecular imprinting and of effective model thiol molecule (L-cysteine) isolation. The relationship between the fluorescence intensity of ZnCd/S quantum dots and the concentration of L-cysteine in the range of 12-150 µg/mL was linear with a detection limit of 3.6 µg/mL. The molecularly imprinted polymer showed high absorption mass capacity (1.73 mg/g) and an excellent selectivity factor for L-cysteine compared to N-acetyl-L-cysteine and L-homocysteine of 63.56 and 87.48, respectively. The proposed method was applied for L-cysteine determination in human urine with satisfactory results. Due to a high variability of molecular imprinting technology and versatility of in-situ probe formation, methods based on this approach can be easily adopted for analysis of any thiol of interest.
Zobrazit více v PubMed
Liu G, et al. Recent advances and perspectives of molecularly imprinted polymer-based fluorescent sensors in food and environment analysis. Nanomaterials. 2019;9:1030. doi: 10.3390/nano9071030. PubMed DOI PMC
Gui R, Jin H, Guo H, Wang Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens. Bioelectron. 2018;100:56–70. doi: 10.1016/j.bios.2017.08.058. PubMed DOI
Rutkowska M, et al. Application of molecularly imprinted polymers in analytical chiral separations and analysis. TrAC Trends Anal. Chem. 2018;102:91–102. doi: 10.1016/j.trac.2018.01.011. DOI
Bezdekova J, et al. Molecularly imprinted polymers and capillary electrophoresis for sensing phytoestrogens in milk. J. Dairy Sci. 2020;103:4941–4950. doi: 10.3168/jds.2019-17367. PubMed DOI
Bezdekova J, et al. Magnetic molecularly imprinted polymers used for selective isolation and detection of Staphylococcus aureus. Food Chem. 2020 doi: 10.1016/j.foodchem.2020.126673. PubMed DOI
Piechocka J, Wronska M, Glowacki R. Chromatographic strategies for the determination of aminothiols in human saliva. Trac-Trends Anal. Chem. 2020 doi: 10.1016/j.trac.2020.115866. DOI
Aswini KK, Mohan AMV, Biju VM. Molecularly imprinted polymer based electrochemical detection of l-cysteine at carbon paste electrode. Mater. Sci. Eng. C. 2014;37:321–326. doi: 10.1016/j.msec.2014.01.020. PubMed DOI
Cai X, et al. Chemodosimeter-based fluorescent detection of l-cysteine after extracted by molecularly imprinted polymers. Talanta. 2014;120:297–303. doi: 10.1016/j.talanta.2013.12.019. PubMed DOI
Lai Y-T, Ganguly A, Chen L-C, Chen K-H. Direct voltammetric sensing of l-cysteine at pristine GaN nanowires electrode. Biosens. Bioelectron. 2010;26:1688–1691. doi: 10.1016/j.bios.2010.07.005. PubMed DOI
Goodman MT, McDuffie K, Hernandez B, Wilkens LR, Selhub J. Case-control study of plasma folate, homocysteine, vitamin B12, and cysteine as markers of cervical dysplasia. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2000;89:376–382. PubMed
Mitchell SC, Steventon GB. S-Carboxymethyl-l-cysteine. Drug Metab. Rev. 2012;44:129–147. doi: 10.3109/03602532.2011.631015. PubMed DOI
Gazit V, Ben-Abraham R, Coleman R, Weizman A, Katz Y. Cysteine-induced hypoglycemic brain damage: An alternative mechanism to excitotoxicity. Amino Acids. 2004;26:163–168. doi: 10.1007/s00726-003-0045-5. PubMed DOI
Breitkreutz R, et al. Improvement of immune functions in HIV infection by sulfur supplementation: Two randomized trials. J. Mol. Med. 2000;78:55–62. doi: 10.1007/s001099900073. PubMed DOI
Zelikovic, I. In Nephrology and Fluid/electrolyte Physiology, 3rd ed (eds Oh, W. & Baum, M.) 315–344 (Elsevier, 2019).
Alizadeh R. Chlorophenol’s ultra-trace analysis in environmental samples by chitosan–zinc oxide nanorod composite as a novel coating for solid phase micro-extraction combined with high performance liquid chromatography. Talanta. 2016;146:831–838. doi: 10.1016/j.talanta.2015.06.004. PubMed DOI
Wu H-P, Huang C-C, Cheng T-L, Tseng W-L. Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine. Talanta. 2008;76:347–352. doi: 10.1016/j.talanta.2008.03.004. PubMed DOI
Nie L, et al. Direct chemiluminescence determination of cysteine in human serum using quinine–Ce (IV) system. Talanta. 2003;59:959–964. doi: 10.1016/S0039-9140(02)00649-5. PubMed DOI
Zhang T, et al. Rapid synthesis of UiO-66 by means of electrochemical cathode method with electrochemical detection of 2, 4, 6-TCP. Inorg. Chem. Commun. 2020;111:107671. doi: 10.1016/j.inoche.2019.107671. DOI
Wang L, Liu Y, Yang R, Li J, Qu L. AgNPs–PDA–GR nanocomposites-based molecularly imprinted electrochemical sensor for highly recognition of 2,4,6-trichlorophenol. Microchem. J. 2020;159:105567. doi: 10.1016/j.microc.2020.105567. DOI
Pirzada M, Sehit E, Altintas Z. Cancer biomarker detection in human serum samples using nanoparticle decorated epitope-mediated hybrid MIP. Biosens. Bioelectron. 2020;166:112464. doi: 10.1016/j.bios.2020.112464. PubMed DOI
Hai X, Lin X, Chen X, Wang J. Highly selective and sensitive detection of cysteine with a graphene quantum dots-gold nanoparticles based core-shell nanosensor. Sens. Actuators B Chem. 2018;257:228–236. doi: 10.1016/j.snb.2017.10.169. DOI
Subramanian S, Ganapathy S, Rajaram M, Ayyaswamy A. Tuning the optical properties of colloidal quantum dots using thiol group capping agents and its comparison. Mater. Chem. Phys. 2020;249:123127. doi: 10.1016/j.matchemphys.2020.123127. DOI
Ensafi AA, Kazemifard N, Rezaei B. A simple and sensitive fluorimetric aptasensor for the ultrasensitive detection of arsenic(III) based on cysteamine stabilized CdTe/ZnS quantum dots aggregation. Biosens. Bioelectron. 2016;77:499–504. doi: 10.1016/j.bios.2015.10.011. PubMed DOI
Nejdl L, et al. Rapid preparation of self-assembled CdTe quantum dots used for sensing of DNA in urine. New J. Chem. 2018;42:6005–6012. doi: 10.1039/c7nj05167k. DOI
Nejdl L, et al. UV-induced nanoparticles-formation, properties and their potential role in origin of life. Nanomaterials. 2020;10:1529. doi: 10.3390/nano10081529. PubMed DOI PMC
Zhao S, et al. Preparation of restricted access media-molecularly imprinted polymers for the detection of chloramphenicol in bovine serum. J. Anal. Methods Chem. 2019;2019:1–12. doi: 10.1155/2019/7930102. PubMed DOI PMC
Bezdekova J, et al. Magnetic molecularly imprinted polymers used for selective isolation and detection of Staphylococcus aureus. Food Chem. 2020;321:126673. doi: 10.1016/j.foodchem.2020.126673. PubMed DOI
Bezdekova J, et al. Detection of microbial contamination based on uracil-selective synthetic receptors. Talanta. 2021;224:7. doi: 10.1016/j.talanta.2020.121813. PubMed DOI
Li X, et al. Preparation of anti-nonspecific adsorption polydopamine-based surface protein-imprinted magnetic microspheres with the assistance of 2-methacryloyloxyethyl phosphorylcholine and its application for protein recognition. Sens. Actuators B Chem. 2017;241:413–421. doi: 10.1016/j.snb.2016.10.105. DOI
He J, Lu Y, Zhao T, Li Y. Preparation of polydopamine-coated, graphene oxide/Fe3O4-imprinted nanoparticles for selective removal of sulfonylurea herbicides in cereals. J. Sci. Food Agric. 2020;100:3822–3831. doi: 10.1002/jsfa.10419. PubMed DOI
USP 42/ NF 37, The United States Pharmacopeia. Vol. 1, 1198–1199 (Printed in the United State by United Book Press, Inc., 2019).
Wang Z, Tang F, Fan H, Wang L, Jin Z. Polydopamine generates hydroxyl free radicals under ultraviolet-light illumination. Langmuir. 2017;33:5938–5946. doi: 10.1021/acs.langmuir.7b01065. PubMed DOI
Kaur, H., Hippargi, G., Pophali, G. R. & Bansiwal, A. K. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology (eds Vara Prasad, M. N. et al.) 129–150 (Butterworth-Heinemann, 2019).
Haldar D, Bose S, Ghosh A, Saha SK. A green luminescent MoS 2–CdTe hybrid nanostructure synthesized through surface charge interaction. Nanoscale Adv. 2019;1:1853–1863. doi: 10.1039/C8NA00388B. PubMed DOI PMC
Dai Q, Wang Y, Xu W, Liu Y, Zhou Y. Adsorption and specific recognition of DNA by using imprinted polymer layers grafted onto ionic liquid functionalized magnetic microspheres. Microchim. Acta. 2017;184:4433–4441. doi: 10.1007/s00604-017-2495-6. DOI
Han W, et al. Facile modification of protein-imprinted polydopamine coatings over nanoparticles with enhanced binding selectivity. Chem. Eng. J. 2020;385:123463. doi: 10.1016/j.cej.2019.123463. DOI
Qi Y, Zhu L, Gao C, Shen J. A novel nanofiltration membrane with simultaneously enhanced antifouling and antibacterial properties. RSC Adv. 2019;9:6107–6117. doi: 10.1039/C8RA09875A. PubMed DOI PMC
El Ibrahimi B, et al. Cysteine duality effect on the corrosion inhibition and acceleration of 3003 aluminium alloy in a 2% NaCl solution. Port. Electrochim. Acta. 2018;36:403–422. doi: 10.4152/pea.201806403. DOI
Wall S, Oh J-Y, Diers A, Landar A. Oxidative modification of proteins: An emerging mechanism of cell signaling. Front. Physiol. 2012 doi: 10.3389/fphys.2012.00369. PubMed DOI PMC
Farhadi K, Farnad N. Polydopamine nanoparticles as a new nanobiopolymer for the biosorption of l-cysteine from aqueous solutions. J. Iran. Chem. Soc. 2015;12:347–357. doi: 10.1007/s13738-014-0489-4. DOI
Leslie, S., Sajjad, H. & Bashir, K. 24-Hour Urine Testing for Nephrolithiasis Interpretation. StatPearls (2020). PubMed
Pak, C. Y. C. In Metabolic Bone Disease and Clinically Related Disorders, 3rd ed (eds Avioli, L. V. & Krane, S. M.) 739–758 (Academic Press, 1998).
Clarkson, M. R., Magee, C. N. & Brenner, B. M. Pocket Companion to Brenner and Rector's The Kidney, 8th ed (eds Clarkson, M. R. et al) 21–41 (W.B. Saunders, 2011).
Shen L, et al. Clinical and genetic characterization of Chinese pediatric cystine stone patients. J. Pediatr. Urol. 2017;13(629):e621–629.e625. PubMed
Sun MM, et al. Reduction−alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug. Chem. 2005;16:1282–1290. doi: 10.1021/bc050201y. PubMed DOI PMC
Zhang L, Lu B, Lu C, Lin JM. Determination of cysteine, homocysteine, cystine, and homocystine in biological fluids by HPLC using fluorosurfactant-capped gold nanoparticles as postcolumn colorimetric reagents. J. Sep. Sci. 2014;37:30–36. doi: 10.1002/jssc.201300998. PubMed DOI
Kusmierek K, Glowacki R, Bald E. Analysis of urine for cysteine, cysteinylglycine, and homocysteine by high-performance liquid chromatography. Anal. Bioanal. Chem. 2006;385:855–860. doi: 10.1007/s00216-006-0454-x. PubMed DOI
Abcom. Cysteine Assay Kit (Fluorometric) (ab211099), https://www.abcam.com/cysteine-assay-kit-fluorometric-ab211099.html (2021).
Merck. Cysteine Assay Kit (Fluorometric), https://www.sigmaaldrich.com/catalog/product/sigma/mak255?lang=en®ion=CZ&gclid=CjwKCAjw47eFBhA9EiwAy8kzNPyTLil5Ba4IvqGaCS4y-avC3mkr2MZ8Q0Ex2A5rYuQjswNoL7DOYRoCn9YQAvD_BwE (2021).
Fattah H, Hambaroush Y, Goldfarb DS. Cystine nephrolithiasis. Transl. Androl. Urol. 2014;3:228. PubMed PMC