Thermoregulatory ability and mechanism do not differ consistently between neotropical and temperate butterflies
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
37315654
PubMed Central
PMC10946725
DOI
10.1111/gcb.16797
Knihovny.cz E-zdroje
- Klíčová slova
- Lepidoptera, behaviour, climate change, ecophysiology, ectotherms, insects, microclimate, tropics,
- MeSH
- lidé MeSH
- motýli * fyziologie MeSH
- nízká teplota MeSH
- teplota MeSH
- termoregulace MeSH
- vysoká teplota MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Climate change is a major threat to species worldwide, yet it remains uncertain whether tropical or temperate species are more vulnerable to changing temperatures. To further our understanding of this, we used a standardised field protocol to (1) study the buffering ability (ability to regulate body temperature relative to surrounding air temperature) of neotropical (Panama) and temperate (the United Kingdom, Czech Republic and Austria) butterflies at the assemblage and family level, (2) determine if any differences in buffering ability were driven by morphological characteristics and (3) used ecologically relevant temperature measurements to investigate how butterflies use microclimates and behaviour to thermoregulate. We hypothesised that temperate butterflies would be better at buffering than neotropical butterflies as temperate species naturally experience a wider range of temperatures than their tropical counterparts. Contrary to our hypothesis, at the assemblage level, neotropical species (especially Nymphalidae) were better at buffering than temperate species, driven primarily by neotropical individuals cooling themselves more at higher air temperatures. Morphology was the main driver of differences in buffering ability between neotropical and temperate species as opposed to the thermal environment butterflies experienced. Temperate butterflies used postural thermoregulation to raise their body temperature more than neotropical butterflies, probably as an adaptation to temperate climates, but the selection of microclimates did not differ between regions. Our findings demonstrate that butterfly species have unique thermoregulatory strategies driven by behaviour and morphology, and that neotropical species are not likely to be more inherently vulnerable to warming than temperate species.
El calentamiento global es una gran amenaza para las especies alrededor del mundo, sin embargo, no se tiene bien definido sí en los insectos, las especies distribuídas en las zonas tropicales son más vulnerables a los cambios de temperature que las especies de zonas templadas o viceversa. Para responder a este interrogante, utilizamos un protocolo de campo estandarizado aplicado a especies de mariposas distribuídas en zonas tropicales (Panamá) versus zonas templadas (Reino Unido, República Checa y Austria), con el cual buscamos: (1) Evaluar la capacidad de amortiguación (capacidad de regular la temperatura corporal en relación con la temperatura del aire circundante) en el a nivel de ensamblaje y familia, (2) Determinar sí las diferencias en la capacidad de amortiguación es facilitada por sus características morfológicas, y (3) Investigar cómo las mariposas usan los microclimas y el comportamiento para termorregularse a tráves de mediciones de temperatura ecológicamente relevantes. Nuestra hipotesis incial soportaba que las mariposas templadas estaban adaptadas para amortiguar los cambios de temperatura en comparación con las mariposas neotropicales, ya que las especies templadas experimentan un rango más amplio de temperaturas que sus contrapartes tropicales. Contrariamente a nuestra hipótesis, a nivel de ensamble, las especies neotropicales (especialmente familia Nymphalidae) fueron mejores en la capaicidad de amortiguacion que las especies templadas, explicado por el hecho de que individuos se enfrían más a altas temperaturas del aire. Así, la morfología fué el principal impulsor de las diferencias en la capacidad de amortiguación entre las especies neotropicales y templadas en comparación con el ambiente térmico experimentado por las mismas. Encontramos que las mariposas templadas utilizaron la termorregulación de postura para elevar su temperatura corporal más que las mariposas neotropicales, probablemente como una adaptación a los climas templados, aunque la selección de microclimas no difirió entre regiones. Nuestros hallazgos demuestran que las especies de mariposas tienen estrategias de termorregulación únicas, impulsadas principalmente por el comportamiento y morfología, además nuestros resultados demuestran que a diferencia de lo que se ha pensado, las especies neotropicales son igual de vulnerables al calentamiento de su hábitat que las especies templadas.
Department of Biosciences Durham University Durham UK
Department of Zoology University of Cambridge Cambridge UK
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Maestria de Entomologia University of Panama Panama City Panama
Smithsonian Tropical Research Institute Panama City Panama
Wildlife Trust of Bedfordshire Cambridgeshire and Northamptonshire Cambourne UK
Zobrazit více v PubMed
Advani, N. K. , Parmesan, C. , & Singer, M. C. (2019). Takeoff temperatures in Melitaea cinxia butterflies from latitudinal and elevational range limits: A potential adaptation to solar irradiance. Ecological Entomology, 44, 389–396. 10.1111/een.12714 DOI
Angilletta, M. J. (2009). Thermal adaptation: A theoretical and empirical synthesis, Oxford biology. Oxford University Press.
Basset, Y. , Barrios, H. , Segar, S. , Srygley, R. B. , Aiello, A. , Warren, A. D. , Delgado, F. , Coronado, J. , Lezcano, J. , Arizala, S. , Rivera, M. , Perez, F. , Bobadilla, R. , Lopez, Y. , & Ramirez, J. A. (2015). The butterflies of Barro Colorado Island, Panama: Local extinction since the 1930s. PLoS One, 10, e0136623. 10.1371/journal.pone.0136623 PubMed DOI PMC
Bates, D. , Mächler, M. , Bolker, B. , & Walker, S. (2015). Fitting linear mixed effects models using lme4. Journal of Statistical Software, 67, 1–48. 10.18637/jss.v067.i01 DOI
Bladon, A. J. , Lewis, M. , Bladon, E. K. , Buckton, S. J. , Corbett, S. , Ewing, S. R. , Hayes, M. P. , Hitchcock, G. E. , Knock, R. , Lucas, C. , McVeigh, A. , Menéndez, R. , Walker, J. M. , Fayle, T. M. , & Turner, E. C. (2020). How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends. The Journal of Animal Ecology, 89, 1365–2656. 10.1111/1365-2656.13319 PubMed DOI
Bonebrake, T. C. , Boggs, C. L. , Stamberger, J. A. , Deutsch, C. A. , & Ehrlich, P. R. (2014). From global change to a butterfly flapping: Biophysics and behaviour affect tropical climate change impacts. Proceedings of the Royal Society B, 281, 20141264. 10.1098/rspb.2014.1264 PubMed DOI PMC
Bonebrake, T. C. , Ponisio, L. C. , Boggs, C. L. , & Ehrlich, P. R. (2010). More than just indicators: A review of tropical butterfly ecology and conservation. Biological Conservation, 143, 1831–1841. 10.1016/j.biocon.2010.04.044 DOI
Bowler, K. , & Terblanche, J. S. (2008). Insect thermal tolerance: What is the role of ontogeny, ageing and senescence? Biological Reviews, 83, 339–355. 10.1111/j.1469-185X.2008.00046.x PubMed DOI
Chazot, N. , Panara, S. , Zilbermann, N. , Blandin, P. , Le Poul, Y. , Cornette, R. , Elias, M. , & Debat, V. (2016). Morpho morphometrics: Shared ancestry and selection drive the evolution of wing size and shape in Morpho butterflies. Evolution, 70, 181–194. 10.1111/evo.12842 PubMed DOI
Colado, R. , Pallarés, S. , Fresneda, J. , Mammola, S. , Rizzo, V. , & Sánchez‐Fernández, D. (2022). Climatic stability, not average habitat temperature, determines thermal tolerance of subterranean beetles. Ecology, 103. 10.1002/ecy.3629 PubMed DOI
Cómbita, J. L. , Giraldo, C. E. , & Escobar, F. (2022). Environmental variation associated with topography explains butterfly diversity along a tropical elevation gradient. Biotropica, 54, 146–156. 10.1111/btp.13040 DOI
De Frenne, P. , Lenoir, J. , Luoto, M. , Scheffers, B. R. , Zellweger, F. , Aalto, J. , Ashcroft, M. B. , Christiansen, D. M. , Decocq, G. , De Pauw, K. , Govaert, S. , Greiser, C. , Gril, E. , Hampe, A. , Jucker, T. , Klinges, D. H. , Koelemeijer, I. A. , Lembrechts, J. J. , Marrec, R. , … Hylander, K. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27, 2279–2297. 10.1111/gcb.15569 PubMed DOI
Deutsch, C. A. , Tewksbury, J. J. , Huey, R. B. , Sheldon, K. S. , Ghalambor, C. K. , Haak, D. C. , & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105, 6668–6672. 10.1073/pnas.0709472105 PubMed DOI PMC
Diamond, S. E. , Frame, A. M. , Martin, R. A. , & Buckley, L. B. (2011). Species' traits predict phenological responses to climate change in butterflies. Ecology, 92, 1005–1012. 10.1890/10-1594.1 PubMed DOI
Diamond, S. E. , & Yilmaz, A. R. (2018). The role of tolerance variation in vulnerability forecasting of insects. Current Opinion in Insect Science, 29, 85–92. 10.1016/j.cois.2018.07.009 PubMed DOI
Eggleton, P. (2020). The state of the World's insects. Annual Review of Environment and Resources, 45, 61–82. 10.1146/annurev-environ-012420-050035 DOI
Franco, A. M. A. , Hill, J. K. , Kitschke, C. , Collingham, Y. C. , Roy, D. B. , Fox, R. , Huntley, B. , & Thomas, C. D. (2006). Impacts of climate warming and habitat loss on extinctions at species' low‐latitude range boundaries: Southern range boundry extinctions. Global Change Biology, 12, 1545–1553. 10.1111/j.1365-2486.2006.01180.x DOI
Garcia‐Robledo, C. , Kuprewicz, E. K. , Dierick, D. , Hurley, S. , & Langevin, A. (2020). The affordable laboratory of climate change: Devices to estimate ectotherm vital rates under projected global warming. Ecosphere, 11. 10.1002/ecs2.3083 DOI
Ghalambor, C. K. (2006). Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integrative and Comparative Biology, 46, 5–17. 10.1093/icb/icj003 PubMed DOI
González‐Tokman, D. , Córdoba‐Aguilar, A. , Dáttilo, W. , Lira‐Noriega, A. , Sánchez‐Guillén, R. A. , & Villalobos, F. (2020). Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biological Reviews, 95, 802–821. 10.1111/brv.12588 PubMed DOI
Günter, F. , Beaulieu, M. , Brunetti, M. , Lange, L. , Schmitz Ornés, A. , & Fischer, K. (2019). Latitudinal and altitudinal variation in ecologically important traits in a widespread butterfly. Biological Journal of the Linnean Society, 128, 742–755. 10.1093/biolinnean/blz133 DOI
Harvey, J. A. , Heinen, R. , Armbrecht, I. , Basset, Y. , Baxter‐Gilbert, J. H. , Bezemer, T. M. , Böhm, M. , Bommarco, R. , Borges, P. A. V. , Cardoso, P. , Clausnitzer, V. , Cornelisse, T. , Crone, E. E. , Dicke, M. , Dijkstra, K.‐D. B. , Dyer, L. , Ellers, J. , Fartmann, T. , Forister, M. L. , … de Kroon, H. (2020). International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 4, 174–176. 10.1038/s41559-019-1079-8 PubMed DOI
Hassall, C. (2015). Strong geographical variation in wing aspect ratio of a damselfly, Calopteryx maculata (Odonata: Zygoptera). PeerJ, 3, e1219. 10.7717/peerj.1219 PubMed DOI PMC
Huey, R. B. , Deutsch, C. A. , Tewksbury, J. J. , Vitt, L. J. , Hertz, P. E. , Álvarez Pérez, H. J. , & Garland, T. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B, 276, 1939–1948. 10.1098/rspb.2008.1957 PubMed DOI PMC
Janzen, D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101(919), 233–249. 10.1086/282487 DOI
Johansson, F. , Orizaola, G. , & Nilsson‐Örtman, V. (2020). Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect species. Scientific Reports, 10, 8822. 10.1038/s41598-020-65608-7 PubMed DOI PMC
Jucker, T. , Jackson, T. D. , Zellweger, F. , Swinfield, T. , Gregory, N. , Williamson, J. , Slade, E. M. , Phillips, J. W. , Bittencourt, P. R. L. , Blonder, B. , Boyle, M. J. W. , Ellwood, M. D. F. , Hemprich‐Bennett, D. , Lewis, O. T. , Matula, R. , Senior, R. A. , Shenkin, A. , Svátek, M. , & Coomes, D. A. (2020). A research agenda for microclimate ecology in human‐modified tropical forests. Frontiers in Forests and Global Change, 2, 92. 10.3389/ffgc.2019.00092 DOI
Kearney, M. , Shine, R. , & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer “cold‐blooded” animals against climate warming. Proceedings of the National Academy of Sciences United States of America, 106, 3835–3840. 10.1073/pnas.0808913106 PubMed DOI PMC
Kemp, D. J. , & Krockenberger, A. K. (2002). A novel method of behavioural thermoregulation in butterflies: Thermoregulation in butterflies. Journal of Evolutionary Biology, 15, 922–929. 10.1046/j.1420-9101.2002.00470.x DOI
Kingsolver, J. G. (1988). Thermoregulation, flight, and the evolution of wing pattern in pierid butterflies: The topography of adaptive landscapes. American Zoologist, 28, 899–912. 10.1093/icb/28.3.899 DOI
Kingsolver, J. G. , Arthur Woods, H. , Buckley, L. B. , Potter, K. A. , MacLean, H. J. , & Higgins, J. K. (2011). Complex life cycles and the responses of insects to climate change. Integrative and Comparative Biology, 51, 719–732. 10.1093/icb/icr015 PubMed DOI
Kleckova, I. , Konvicka, M. , & Klecka, J. (2014). Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: Importance of fine‐scale habitat heterogeneity. Journal of Thermal Biology, 41, 50–58. 10.1016/j.jtherbio.2014.02.002 PubMed DOI
Kuznetsova, A. , Brockhoff, P. B. , & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 83, 1–26.
Lee, J. Y. , Marotzke, G. , Bala, G. , Cao, L. , Corti, S. , Dunne, J. P. , Engelbrecht, F. , FIscher, E. , Fyfe, J. C. , Jones, C. , Maycock, A. , Mutemi, J. , Ndiaye, O. , Panickal, S. , & Zhou, T. (2021). Future global climate: Scenario‐based projections and near‐term information. In Climate change 2021: The physical science basis. Intergovernmental Panel on Climate Change (IPCC). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA (pp. 553–672).
Leigh, Jr., E. G. (1999). Tropical forest ecology: A view from Barro Colorado Island. Oxford University Press.
Lindsey, J. K. (2016). Ecology of commanster: Ecological relationships among more than 7800 species. https://www.commanster.eu/commanster.html
Lüdecke, D. (2018). ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software, 3(26), 772. 10.21105/joss.00772 DOI
Ma, C.‐S. , Ma, G. , & Pincebourde, S. (2021). Survive a warming climate: Insect responses to extreme high temperatures. Annual Review of Entomology, 66, 163–184. 10.1146/annurev-ento-041520-074454 PubMed DOI
Menéndez, R. , González‐Megías, A. , Collingham, Y. , Fox, R. , Roy, D. B. , Ohlemüller, R. , & Thomas, C. D. (2007). Direct and indirect effects of climate and habitat factors on butterfly diversity. Ecology, 88, 605–611. 10.1890/06-0539 PubMed DOI
Mi, C. , Ma, L. , Wang, Y. , Wu, D. , Du, W. , & Sun, B. (2022). Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress. Proceedings of the Royal Society B, 289, 20221074. 10.1098/rspb.2022.1074 PubMed DOI PMC
Montejo‐Kovacevich, G. , Martin, S. H. , Meier, J. I. , Bacquet, C. N. , Monllor, M. , Jiggins, C. D. , & Nadeau, N. J. (2020). Microclimate buffering and thermal tolerance across elevations in a tropical butterfly. The Journal of Experimental Biology, 223, jeb220426. 10.1242/jeb.220426 PubMed DOI PMC
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669. 10.1146/annurev.ecolsys.37.091305.110100 DOI
Pincebourde, S. , & Woods, H. A. (2020). There is plenty of room at the bottom: Microclimates drive insect vulnerability to climate change. Current Opinion in Insect Science, 41, 63–70. 10.1016/j.cois.2020.07.001 PubMed DOI
R Core Team . (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
Schneider, C. A. , Rasband, W. S. , & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. PubMed PMC
Seebacher, F. , White, C. R. , & Franklin, C. E. (2015). Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change, 5, 61–66. 10.1038/nclimate2457 DOI
Sgrò, C. M. , Terblanche, J. S. , & Hoffmann, A. A. (2016). What can plasticity contribute to insect responses to climate change? Annual Review of Entomology, 61, 433–451. 10.1146/annurev-ento-010715-023859 PubMed DOI
Shanks, K. , Senthilarasu, S. , Ffrench‐Constant, R. H. , & Mallick, T. K. (2015). White butterflies as solar photovoltaic concentrators. Scientific Reports, 5, 12267. 10.1038/srep12267 PubMed DOI PMC
Sheldon, K. S. , & Tewksbury, J. J. (2014). The impact of seasonality in temperature on thermal tolerance and elevational range size. Ecology, 95, 2134–2143. 10.1890/13-1703.1 PubMed DOI
Stella, D. , Pecháček, P. , Meyer‐Rochow, V. B. , & Kleisner, K. (2018). UV reflectance is associated with environmental conditions in Palaearctic Pieris napi (Lepidoptera: Pieridae): Biogeography of UV reflectance. Insect Sci., 25, 508–518. 10.1111/1744-7917.12429 PubMed DOI
Stork, N. E. (2018). How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology, 63, 31–45. 10.1146/annurev-ento-020117-043348 PubMed DOI
Sunday, J. , Bennett, J. M. , Calosi, P. , Clusella‐Trullas, S. , Gravel, S. , Hargreaves, A. L. , Leiva, F. P. , Verberk, W. C. E. P. , Olalla‐Tárraga, M. Á. , & Morales‐Castilla, I. (2019). Thermal tolerance patterns across latitude and elevation. Philosophical Transactions of the Royal Society B, 374, 20190036. 10.1098/rstb.2019.0036 PubMed DOI PMC
Sunday, J. M. , Bates, A. E. , & Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2, 686–690. 10.1038/nclimate1539 DOI
Sunday, J. M. , Bates, A. E. , Kearney, M. R. , Colwell, R. K. , Dulvy, N. K. , Longino, J. T. , & Huey, R. B. (2014). Thermal‐safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences, 111, 5610–5615. 10.1073/pnas.1316145111 PubMed DOI PMC
Wasserthal, L. T. (1975). The role of butterfly wings in regulation of body temperature. Journal of Insect Physiology, 21, 1921–1930. 10.1016/0022-1910(75)90224-3 DOI
Wenda, C. , Xing, S. , Nakamura, A. , & Bonebrake, T. C. (2021). Morphological and behavioural differences facilitate tropical butterfly persistence in variable environments. The Journal of Animal Ecology, 90, 2888–2900. 10.1111/1365-2656.13589 PubMed DOI
Wickham, H. , 2016. ggplot2: Elegant graphics for data Analysis. Springer‐Verlag.
Wiemers, M. , Balletto, E. , Dincă, V. , Fric, Z. F. , Lamas, G. , Lukhtanov, V. , Munguira, M. L. , van Swaay, C. A. M. , Vila, R. , Vliegenthart, A. , Wahlberg, N. , & Verovnik, R. (2018). An updated checklist of the European butterflies (Lepidoptera, Papilionoidea). Zookeys, 811, 9–45. 10.3897/zookeys.811.28712 PubMed DOI PMC
Xing, S. , Bonebrake, T. C. , Tang, C. C. , Pickett, E. J. , Cheng, W. , Greenspan, S. E. , Williams, S. E. , & Scheffers, B. R. (2016). Cool habitats support darker and bigger butterflies in Australian tropical forests. Ecology and Evolution, 6, 8062–8074. 10.1002/ece3.2464 PubMed DOI PMC
Zeuss, D. , Brandl, R. , Brändle, M. , Rahbek, C. , & Brunzel, S. (2014). Global warming favours light‐coloured insects in Europe. Nature Communications, 5, 3874. 10.1038/ncomms4874 PubMed DOI PMC