• This record comes from PubMed

European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases

. 2022 Sep 01 ; 24 (8) : 1307-1367.

Language English Country England, Great Britain Media print

Document type Journal Article

Grant support
MC_UP_1102/20 Medical Research Council - United Kingdom
R01 HL152201 NHLBI NIH HHS - United States

Agnes Ginges Centre for Molecular Cardiology at Centenary Institute University of Sydney Sydney Australia

Amsterdam UMC Heart Center Department of Experimental Cardiology Amsterdam The Netherlands

Arrhythmia and Electrophysiology Unit Biocor Institute Minas Gerais Brazil; and Member of the Latin American Heart Rhythm Society

Arrhythmia Unit Instituto do Coração Hospital das Clínicas HCFMUSP Faculdade de Medicina Universidade de São Paulo São Paulo Brazil

Arrhythmia Unit Instituto do Coracao Hospital das Clinicas HCFMUSP Faculdade de Medicina Universidade de Sao Paulo Sao Paulo Brazil; and Member of the Latin American Heart Rhythm Society

Cardiac Arrhythmia Service Massachusetts General Hospital and Harvard Medical School Boston MA USA

Cardiac Wellness Institute Chennai India

Cardiomyopathy Unit and Cardiac Rehabilitation Unit San Luca Hospital Istituto Auxologico Italiano IRCCS Milan Italy

Cardiovascular Clinical Academic Group Institute of Molecular and Clinical Sciences St George's University of London; St George's University Hospitals NHS Foundation Trust London UK; Mayo Clinic Healthcare London

Cardiovascular Genetics Center Department of Medicine Montreal Heart Institute Université de Montréal Montreal Canada

Cardiovascular Health Research Unit Division of Cardiology Department of Medicine University of Washington Seattle WA USA

Cardiovascular Research Lankenau Institute of Medical Research Wynnewood PA USA; and Member of the Latin American Heart Rhythm Society

Center for Cardiac Arrhythmias of Genetic Origin Istituto Auxologico Italiano IRCCS Milan Italy

Center for Cardiac Electrophysiology and Pacing University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine Cleveland OH USA

Center for Human Genetics University Hospitals Leuven Leuven Belgium

Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares Madrid Spain

Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares Madrid Spain

Centro Nacional de Investigaciones Cardiovasculares Carlos 3 Madrid Spain

Cincinnati Children's Hospital Medical Centre University of Cincinnati Cincinnati OH USA

Clinical Department Health in Code A Coruña Spain; and Member of the Latin American Heart Rhythm Society

Department of Bioscience and Genetics National Cerebral and Cardiovascular Center Suita Japan

Department of Cardiology and Intensive Care Medicine University Hospital Campus Klinikum Bielefeld Bielefeld Germany

Department of Cardiology Institute for Clinical and Experimental Medicine Prague Czech Republic

Department of Cardiovascular Medicine Division of Heart Rhythm Services Windland Smith Rice Genetic Heart Rhythm Clinic Mayo Clinic Rochester MN USA

Department of Cardiovascular Medicine Graduate School of Medicine Nippon Medical School Bunkyo ku Tokyo Japan

Department of Cardiovascular Medicine Mayo Clinic Rochester MN USA

Department of Cardiovascular Medicine Stanford University Stanford California USA

Department of Cardiovascular Medicine The 2nd Affiliated Hospital of Nanchang University Nanchang China

Department of Clinical Laboratory Medicine and Genetics National Cerebral and Cardiovascular Center Suita Osaka Japan

Department of Electrophysiology Heart Center at University of Leipzig Leipzig Germany

Department of Electrophysiology Heart Center Leipzig at University of Leipzig Leipzig Germany

Department of Medicine and Surgery University of Milano Bicocca Milan Italy

Department of Molecular Medicine University of Pavia Pavia Italy

Department of Pediatrics Division of Cardiology Vanderbilt University School of Medicine Nashville TN USA

Departments of Cardiovascular Medicine Pediatric and Adolescent Medicine and Molecular Pharmacology and Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory Mayo Clinic Rochester MN USA

Division of Cardiology Department of Internal Medicine Korea University Anam Hospital Korea University College of Medicine Seoul Republic of Korea

Division of Cardiology University of British Columbia Vancouver Canada

Division of Pediatric Arrhythmia and Electrophysiology Italian Hospital of Buenos Aires Buenos Aires Argentina

Heart Center Bad Neustadt Bad Neustadt a d Saale Germany

Heart Centre Department of Cardiology Amsterdam Universitair Medische Centra Amsterdam location AMC The Netherlands

Heart Failure and Inherited Cardiac Diseases Unit Department of Cardiology Hospital Universitario Puerta de Hierro Madrid Spain

Hipercol Brasil Program São Paulo Brazil

Inherited Arrhythmia and Cardiomyopathy Program Division of Cardiology University of Toronto Toronto ON Canada

Institut d'Investigacions Biomèdiques August Pi Sunyer Barcelona Spain

Institute for Genetics of Heart Diseases University Hospital Münster Münster Germany

Instituto Nacional de Cardiología Ignacio Chávez Ciudad de México Mexico

Laboratory of Genetics and Molecular Cardiology Heart Institute University of São Paulo Medical School São Paulo 05403 000 Brazil

Leipzig Heart Institute Leipzig Heart Digital Leipzig Germany

Member of the Latin American Heart Rhythm Society

Metrohealth Medical Center Case Western Reserve University Cleveland OH USA

Molecular Cardiology Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy

National Cerebral and Cardiovascular Center Research Institute Suita Japan

National Heart and Lung Institute and MRC London Institute of Medical Sciences Imperial College London London UK

Royal Brompton and Harefield Hospitals Guy's and St Thomas' NHS Foundation Trust London UK

Section of genetics Department of Forensic Medicine Faculty of Medical Sciences University of Copenhagen Denmark

Sorbonne Université APHP Centre de Référence des Maladies Cardiaques Héréditaires ICAN Inserm UMR1166 Hôpital Pitié Salpêtrière Paris France

Sydney Childrens Hospital Network University of Sydney Sydney Australia

The Department of Cardiology the Heart Centre Copenhagen University Hospital Rigshopitalet Copenhagen Denmark

Erratum In

PubMed

See more in PubMed

Ackerman  MJ, Priori  SG, Willems  S, Berul  C, Brugada  R, Calkins  H  et al. ; European Heart Rhythm Association (EHRA) . HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace  2011;13:1077–109. PubMed

Schwartz  PJ, Crotti  L, George  AL  Jr. Modifier genes for sudden cardiac death. Eur Heart J  2018;39:3925–31. PubMed PMC

Walsh  R, Tadros  R, Bezzina  CR.  When genetic burden reaches threshold. Eur Heart J  2020;41:3849–55. PubMed PMC

Khera  AV, Chaffin  M, Aragam  KG, Haas  ME, Roselli  C, Choi  SH  et al.  Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet  2018;50:1219–24. PubMed PMC

Schwartz  PJ, Breithardt  G, Howard  AJ, Julian  DG, Rehnqvist Ahlberg  N.  Task Force Report: the legal implications of medical guidelines—a Task Force of the European Society of Cardiology. Eur Heart J  1999;20:1152–7. PubMed

Stiles  MK, Wilde  AAM, Abrams  DJ, Ackerman  MJ, Albert  CM, Behr  ER  et al.  2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. Heart Rhythm  2021;18:e1–50. PubMed PMC

Cronin  EM, Bogun  FM, Maury  P, Peichl  P, Chen  M, Namboodiri  N  et al.  2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias: executive summary. J Arrhythm  2020;36:1–58. PubMed PMC

Musunuru  K, Hershberger  RE, Day  SM, Klinedinst  NJ, Landstrom  AP, Parikh  VN  et al. ; American Heart Association Council on Genomic and Precision Medicine; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology . Genetic testing for inherited cardiovascular diseases: a scientific statement from the American Heart Association. Circ Genom Precis Med  2020;13:e000067. PubMed

Fellmann  F, van El  CG, Charron  P, Michaud  K, Howard  HC, Boers  SN  et al. ; on behalf of European Society of Human Genetics, European Council of Legal Medicine, European Society of Cardiology working group on myocardial and pericardial diseases, European Reference Network for rare, low prevalence and complex diseases of the heart (ERN GUARD-Heart), Association for European Cardiovascular Pathology. European recommendations integrating genetic testing into multidisciplinary management of sudden cardiac death. Eur J Hum Genet  2019;27:1763–73. PubMed PMC

Ingles  J, Goldstein  J, Thaxton  C, Caleshu  C, Corty  EW, Crowley  SB  et al.  Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med  2019;12:e002460. PubMed PMC

Towbin  JA, McKenna  WJ, Abrams  DJ, Ackerman  MJ, Calkins  H, Darrieux  FCC  et al.  2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy: executive summary. Heart Rhythm  2019;16:e373–407. PubMed

Al-Khatib  SM, Stevenson  WG, Ackerman  MJ, Bryant  WJ, Callans  DJ, Curtis  AB  et al.  2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm  2018;15:e190–252. PubMed

Priori  SG, Blomström-Lundqvist  C, Mazzanti  A, Blom  N, Borggrefe  M, Camm  J  et al.  2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J  2015;36:2793–867. PubMed

Pedersen  CT, Kay  GN, Kalman  J, Borggrefe  M, Della-Bella  P, Dickfeld  T  et al. ; EP-Europace,UK . EHRA/HRS/APHRS expert consensus on ventricular arrhythmias. Heart Rhythm  2014;11:e166–96. PubMed

Priori  SG, Wilde  AA, Horie  M, Cho  Y, Behr  ER, Berul  C  et al.  HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm  2013;10:1932–63. PubMed

Charron  P, Arad  M, Arbustini  E, Basso  C, Bilinska  Z, Elliott  P  et al.  Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J  2010;31:2715–26. PubMed

Walsh  R, Adler A Amin  AS, Abiusi  E, Care  M, Bikker  H  et al.  A multi-centred, evidence-based evaluation of gene validity in sudden arrhythmic death syndromes: CPVT and the short QT syndrome. Eur Heart J  2021;doi:10.1093/eurheartj/ehab687. PubMed PMC

James  CA, Jongbloed  JDH, Hershberger  RE, Morales  A, Judge  DP, Syrris  P  et al.  International evidence based reappraisal of genes associated with arrhythmogenic right ventricular cardiomyopathy using the clinical genome resource framework. Circ Genom Precis Med  2021;14:e003273. PubMed PMC

Jordan  E, Peterson  L, Ai  T, Asatryan  B, Bronicki  L, Brown  E  et al.  Evidence-based assessment of genes in dilated cardiomyopathy. Circulation  2021;144:7–19. PubMed PMC

Adler  A, Novelli  V, Amin  AS, Abiusi  E, Care  M, Nannenberg  EA  et al.  An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation  2020;141:418–28. PubMed PMC

Hosseini  SM, Kim  R, Udupa  S, Costain  G, Jobling  R, Liston  E  et al. ; National Institutes of Health Clinical Genome Resource Consortium . Reappraisal of reported genes for sudden arrhythmic death: evidence-based evaluation of gene validity for Brugada syndrome. Circulation  2018;138:1195–205. PubMed PMC

Mont  L, Pelliccia  A, Sharma  S, Biffi  A, Borjesson  MB, Terradellas  J  et al. ; Reviewers . Pre-participation cardiovascular evaluation for athletic participants to prevent sudden death: position paper from the EHRA and the EACPR, branches of the ESC. Endorsed by APHRS, HRS, and SOLAECE. Eur J Prev Cardiol  2017;24:41–69. PubMed

Claussnitzer  M, Cho  JH, Collins  R, Cox  NJ, Dermitzakis  ET, Hurles  ME  et al.  A brief history of human disease genetics. Nature  2020;577:179–89. PubMed PMC

Roberts  R, Marian  AJ, Dandona  S, Stewart  AF.  Genomics in cardiovascular disease. J Am Coll Cardiol  2013;61:2029–37. PubMed PMC

Kim  L, Devereux  RB, Basson  CT.  Impact of genetic insights into mendelian disease on cardiovascular clinical practice. Circulation  2011;123:544–50. PubMed

Wordsworth  S, Leal  J, Blair  E, Legood  R, Thomson  K, Seller  A  et al.  DNA testing for hypertrophic cardiomyopathy: a cost-effectiveness model. Eur Heart J  2010;31:926–35. PubMed

Wilde  AA, Behr  ER.  Genetic testing for inherited cardiac disease. Nat Rev Cardiol  2013;10:571–83. PubMed

Lahrouchi  N, Tadros  R, Crotti  L, Mizusawa  Y, Postema  PG, Beekman  L  et al.  Transethnic genome-wide association study provides insights in the genetic architecture and heritability of long QT syndrome. Circulation  2020;142:324–38. PubMed PMC

Tadros  R, Francis  C, Xu  X, Vermeer  AMC, Harper  AR, Huurman  R  et al.  Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat Genet  2021;53:128–34. PubMed PMC

Harper  AR, Goel  A, Grace  C, Thomson  KL, Petersen  SE, Xu  X  et al. ; HCMR Investigators . Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet  2021;53:135–42. PubMed PMC

Conrad  DF, Keebler  JE, DePristo  MA, Lindsay  SJ, Zhang  Y, Casals  F  et al. ; 1000 Genomes Project . Variation in genome-wide mutation rates within and between human families. Nat Genet  2011;43:712–4. PubMed PMC

Abecasis  GR, Altshuler  D, Auton  A, Brooks  LD, Durbin  RM, Gibbs  RA  et al. ; 1000 Genomes Project Consortium . A map of human genome variation from population-scale sequencing. Nature  2010;467:1061–73. PubMed PMC

Hassold  T, Hunt  P.  To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet  2001;2:280–91. PubMed

Stranger  BE, Forrest  MS, Dunning  M, Ingle  CE, Beazley  C, Thorne  N  et al.  Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science  2007;315:848–53. PubMed PMC

Zhang  F, Gu  W, Hurles  ME, Lupski  JR.  Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet  2009;10:451–81. PubMed PMC

Lejeune  J, Gautier  M, Turpin  R.  [Study of somatic chromosomes from 9 mongoloid children]. C R Hebd Seances Acad Sci  1959;248:1721–2. PubMed

Sanger  F, Nicklen  S, Coulson  AR.  DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA  1977;74:5463–7. PubMed PMC

International Human Genome Sequencing Consortium . Finishing the euchromatic sequence of the human genome. Nature  2004;431:931–45. PubMed

Margulies  M, Egholm  M, Altman  WE, Attiya  S, Bader  JS, Bemben  LA  et al.  Genome sequencing in microfabricated high-density picolitre reactors. Nature  2005;437:376–80. PubMed PMC

Bentley  DR, Balasubramanian  S, Swerdlow  HP, Smith  GP, Milton  J, Brown  CG  et al.  Accurate whole human genome sequencing using reversible terminator chemistry. Nature  2008;456:53–9. PubMed PMC

Choi  M, Scholl  UI, Ji  W, Liu  T, Tikhonova  IR, Zumbo  P  et al.  Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA  2009;106:19096–101. PubMed PMC

Ng  SB, Turner  EH, Robertson  PD, Flygare  SD, Bigham  AW, Lee  C  et al.  Targeted capture and massively parallel sequencing of 12 human exomes. Nature  2009;461:272–6. PubMed PMC

Zhang  F, Lupski  JR.  Non-coding genetic variants in human disease. Hum Mol Genet  2015;24:R102–10. PubMed PMC

Whiffin  N, Karczewski  KJ, Zhang  X, Chothani  S, Smith  MJ, Evans  DG  et al. ; Genome Aggregation Database Consortium . Characterising the loss-of-function impact of 5' untranslated region variants in 15,708 individuals. Nat Commun  2020;11:2523. PubMed PMC

Chaisson  MJP, Sanders  AD, Zhao  X, Malhotra  A, Porubsky  D, Rausch  T  et al.  Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat Commun  2019;10:1784. PubMed PMC

Alkan  C, Coe  BP, Eichler  EE.  Genome structural variation discovery and genotyping. Nat Rev Genet  2011;12:363–76. PubMed PMC

Hindson  CM, Chevillet  JR, Briggs  HA, Gallichotte  EN, Ruf  IK, Hindson  BJ  et al.  Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods  2013;10:1003–5. PubMed PMC

LaFramboise  T.  Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res  2009;37:4181–93. PubMed PMC

Kalia  SS, Adelman  K, Bale  SJ, Chung  WK, Eng  C, Evans  JP  et al.  Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med  2017;19:249–55. PubMed

Miller  DT, Lee  K, Chung  WK, Gordon  AS, Herman  GE, Klein  TE  et al. ; ACMG Secondary Findings Working Group . ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med  2021;23:1381–90. PubMed

Visscher  PM, Wray  NR, Zhang  Q, Sklar  P, McCarthy  MI, Brown  MA  et al.  10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet  2017;101:5–22. PubMed PMC

Pe'er  I, Yelensky  R, Altshuler  D, Daly  MJ.  Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol  2008;32:381–5. PubMed

Sotoodehnia  N, Isaacs  A, de Bakker  PI, Dorr  M, Newton-Cheh  C, Nolte  IM  et al.  Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet  2010;42:1068–76. PubMed PMC

Aung  N, Vargas  JD, Yang  C, Cabrera  CP, Warren  HR, Fung  K  et al.  Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development. Circulation  2019;140:1318–30. PubMed PMC

Giri  A, Hellwege  JN, Keaton  JM, Park  J, Qiu  C, Warren  HR  et al. ; Million Veteran Program . Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat Genet  2019;51:51–62. PubMed PMC

Nikpay  M, Goel  A, Won  HH, Hall  LM, Willenborg  C, Kanoni  S  et al.  A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet  2015;47:1121–30. PubMed PMC

Shah  S, Henry  A, Roselli  C, Lin  H, Sveinbjornsson  G, Fatemifar  G  et al. ; Regeneron Genetics Center . Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun  2020;11:163. PubMed PMC

Roselli  C, Chaffin  MD, Weng  LC, Aeschbacher  S, Ahlberg  G, Albert  CM  et al.  Multi-ethnic genome-wide association study for atrial fibrillation. Nat Genet  2018;50:1225–33. PubMed PMC

Ashar  FN, Mitchell  RN, Albert  CM, Newton-Cheh  C, Brody  JA, Muller-Nurasyid  M  et al.  A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J  2018;39:3961–9. PubMed PMC

Bezzina  CR, Barc  J, Mizusawa  Y, Remme  CA, Gourraud  JB, Simonet  F  et al.  Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet  2013;45:1044–9. PubMed PMC

Villard  E, Perret  C, Gary  F, Proust  C, Dilanian  G, Hengstenberg  C  et al.  A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J  2011;32:1065–76. PubMed PMC

Lambert  SA, Gil  L, Jupp  S, Ritchie  SC, Xu  Y, Buniello  A  et al.  The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation. Nat Genet  2021;53:420–5. PubMed PMC

Marston  NA, Kamanu  FK, Nordio  F, Gurmu  Y, Roselli  C, Sever  PS  et al.  Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER trial. Circulation  2020;141:616–23. PubMed PMC

Damask  A, Steg  PG, Schwartz  GG, Szarek  M, Hagstrom  E, Badimon  L  et al. ; On behalf of the Regeneron Genetics Center and the ODYSSEY OUTCOMES Investigators. Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. Circulation  2020;141:624–36. PubMed

Marston  NA, Gurmu  Y, Melloni  GEM, Bonaca  M, Gencer  B, Sever  PS  et al.  The effect of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) inhibition on the risk of venous thromboembolism. Circulation  2020;141:1600–7. PubMed PMC

Tadros  R, Tan  HL, El Mathari  S, Kors  JA, Postema  PG, Lahrouchi  N  et al. ; ESCAPE-NET Investigators . Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores. Eur Heart J  2019;40:3097–107. PubMed PMC

Wijeyeratne  YD, Tanck  MW, Mizusawa  Y, Batchvarov  V, Barc  J, Crotti  L  et al.  SCN5A mutation type and a genetic risk score associate variably with Brugada syndrome phenotype in SCN5A families. Circ Genom Precis Med  2020;13:e002911. PubMed PMC

Turkowski  KL, Dotzler  SM, Tester  DJ, Giudicessi  JR, Bos  JM, Speziale  AD  et al.  Corrected QT interval-polygenic risk score and its contribution to type 1, type 2, and type 3 long-QT syndrome in probands and genotype-positive family members. Circ Genom Precis Med  2020;13:e002922. PubMed

Richards  S, Aziz  N, Bale  S, Bick  D, Das  S, Gastier-Foster  J  et al. ; ACMG Laboratory Quality Assurance Committee . Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med  2015;17:405–24. PubMed PMC

Manrai  AK, Funke  BH, Rehm  HL, Olesen  MS, Maron  BA, Szolovits  P  et al.  Genetic misdiagnoses and the potential for health disparities. N Engl J Med  2016;375:655–65. PubMed PMC

Ackerman  MJ, Tester  DJ, Jones  GS, Will  ML, Burrow  CR, Curran  ME.  Ethnic differences in cardiac potassium channel variants: implications for genetic susceptibility to sudden cardiac death and genetic testing for congenital long QT syndrome. Mayo Clin Proc  2003;78:1479–87. PubMed

Ackerman  MJ, Splawski  I, Makielski  JC, Tester  DJ, Will  ML, Timothy  KW  et al.  Spectrum and prevalence of cardiac sodium channel variants among black, white, Asian, and Hispanic individuals: implications for arrhythmogenic susceptibility and Brugada/long QT syndrome genetic testing. Heart Rhythm  2004;1:600–7. PubMed

Giudicessi  JR, Roden  DM, Wilde  AAM, Ackerman  MJ.  Classification and reporting of potentially proarrhythmic common genetic variation in long QT syndrome genetic testing. Circulation  2018;137:619–30. PubMed PMC

Giudicessi  JR, Wilde  AAM, Ackerman  MJ.  The genetic architecture of long QT syndrome: a critical reappraisal. Trends Cardiovasc Med  2018;28:453–64. PubMed PMC

Ackerman  JP, Bartos  DC, Kapplinger  JD, Tester  DJ, Delisle  BP, Ackerman  MJ.  The Promise and Peril of Precision Medicine. Mayo Clin Proc  2016;91:1606–16. PubMed PMC

Kelly  MA, Caleshu  C, Morales  A, Buchan  J, Wolf  Z, Harrison  SM  et al.  Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen's Inherited Cardiomyopathy Expert Panel. Genet Med  2018;20:351–9. PubMed PMC

Richmond  CM, James  PA, Pantaleo  SJ, Chong  B, Lunke  S, Tan  TY  et al.  Clinical and laboratory reporting impact of ACMG-AMP and modified ClinGen variant classification frameworks in MYH7-related cardiomyopathy. Genet Med  2021;23:1108–15. PubMed

Bains  S, Dotzler  SM, Krijger  C, Giudicessi  JR, Ye  D, Bikker  H  et al.  A phenotype-enhanced variant classification framework to decrease the burden of missense variants of uncertain significance in type 1 long QT syndrome. Heart Rhythm  2022;19:435–42. PubMed

Kim  YE, Ki  CS, Jang  MA.  Challenges and considerations in sequence variant interpretation for mendelian disorders. Ann Lab Med  2019;39:421–9. PubMed PMC

Gelb  BD, Cavé  H, Dillon  MW, Gripp  KW, Lee  JA, Mason-Suares  H  et al. ; ClinGen RASopathy Working Group . ClinGen's RASopathy Expert Panel consensus methods for variant interpretation. Genet Med  2018;20:1334–45. PubMed PMC

Maron  BJ, Maron  MS, Semsarian  C.  Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol  2012;60:705–15. PubMed

Lafreniere-Roula  M, Bolkier  Y, Zahavich  L, Mathew  J, George  K, Wilson  J  et al.  Family screening for hypertrophic cardiomyopathy: is it time to change practice guidelines?  Eur Heart J  2019;40:3672–81. PubMed PMC

Ingles  J, Burns  C, Funke  B.  Pathogenicity of hypertrophic cardiomyopathy variants: a path forward together. Circ Cardiovasc Genet  2017;10:e001916. PubMed

Ouellette  AC, Mathew  J, Manickaraj  AK, Manase  G, Zahavich  L, Wilson  J  et al.  Clinical genetic testing in pediatric cardiomyopathy: is bigger better?  Clin Genet  2018;93:33–40. PubMed

Jensen  MK, Havndrup  O, Christiansen  M, Andersen  PS, Diness  B, Axelsson  A  et al.  Penetrance of hypertrophic cardiomyopathy in children and adolescents: a 12-year follow-up study of clinical screening and predictive genetic testing. Circulation  2013;127:48–54. PubMed

Semsarian  C, Ingles  J, Wilde  AA.  Sudden cardiac death in the young: the molecular autopsy and a practical approach to surviving relatives. Eur Heart J  2015;36:1290–6. PubMed

Rueda  M, Wagner  JL, Phillips  TC, Topol  SE, Muse  ED, Lucas  JR  et al.  Molecular autopsy for sudden death in the young: is data aggregation the key?  Front Cardiovasc Med  2017;4:72. PubMed PMC

Torkamani  A, Muse  ED, Spencer  EG, Rueda  M, Wagner  GN, Lucas  JR  et al.  Molecular autopsy for sudden unexpected death. JAMA  2016;316:1492–4. PubMed PMC

Splawski  I, Timothy  KW, Sharpe  LM, Decher  N, Kumar  P, Bloise  R  et al.  Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell  2004;119:19–31. PubMed

Crotti  L, Johnson  CN, Graf  E, De Ferrari  GM, Cuneo  BF, Ovadia  M  et al.  Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation  2013;127:1009–17. PubMed PMC

Crotti  L, Spazzolini  C, Tester  DJ, Ghidoni  A, Baruteau  AE, Beckmann  BM  et al.  Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur Heart J  2019;40:2964–75. PubMed PMC

Altmann  HM, Tester  DJ, Will  ML, Middha  S, Evans  JM, Eckloff  BW  et al.  Homozygous/compound heterozygous triadin mutations associated with autosomal-recessive long-QT syndrome and pediatric sudden cardiac arrest: elucidation of the Triadin knockout syndrome. Circulation  2015;131:2051–60. PubMed

Clemens  DJ, Tester  DJ, Giudicessi  JR, Bos  JM, Rohatgi  RK, Abrams  DJ  et al.  International Triadin knockout syndrome registry. Circ Genom Precis Med  2019;12:e002419. PubMed

Itoh  H, Crotti  L, Aiba  T, Spazzolini  C, Denjoy  I, Fressart  V  et al.  The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J  2016;37:1456–64. PubMed PMC

Shimizu  W, Horie  M.  Phenotypic manifestations of mutations in genes encoding subunits of cardiac potassium channels. Circ Res  2011;109:97–109. PubMed

Crotti  L, Odening  KE, Sanguinetti  MC.  Heritable arrhythmias associated with abnormal function of cardiac potassium channels. Cardiovasc Res  2020;116:1542–56. PubMed

Dessertenne  F.  [Ventricular tachycardia with 2 variable opposing foci]. Arch Mal Coeur Vaiss  1966;59:263–72. PubMed

Viskin  S.  Long QT syndromes and torsade de pointes. Lancet  1999;354:1625–33. PubMed

Takenaka  K, Ai  T, Shimizu  W, Kobori  A, Ninomiya  T, Otani  H  et al.  Exercise stress test amplifies genotype-phenotype correlation in the LQT1 and LQT2 forms of the long-QT syndrome. Circulation  2003;107:838–44. PubMed

Sy  RW, van der Werf  C, Chattha  IS, Chockalingam  P, Adler  A, Healey  JS  et al.  Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation  2011;124:2187–94. PubMed

Schwartz  PJ, Crotti  L.  QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation  2011;124:2181–4. PubMed

Schwartz  PJ, Stramba-Badiale  M, Crotti  L, Pedrazzini  M, Besana  A, Bosi  G  et al.  Prevalence of the congenital long-QT syndrome. Circulation  2009;120:1761–7. PubMed PMC

Moss  AJ, Schwartz  PJ, Crampton  RS, Locati  E, Carleen  E.  The long QT syndrome: a prospective international study. Circulation  1985;71:17–21. PubMed

Schwartz  PJ.  Idiopathic long QT syndrome: progress and questions. Am Heart J  1985;109:399–411. PubMed

Schwartz  PJ, Spazzolini  C, Crotti  L, Bathen  J, Amlie  JP, Timothy  K  et al.  The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation  2006;113:783–90. PubMed

Roberts  JD, Asaki  SY, Mazzanti  A, Bos  JM, Tuleta  I, Muir  AR  et al.  An international multicenter evaluation of type 5 long QT syndrome: a low penetrant primary arrhythmic condition. Circulation  2020;141:429–39. PubMed PMC

Mazzanti  A, Guz  D, Trancuccio  A, Pagan  E, Kukavica  D, Chargeishvili  T  et al.  Natural history and risk stratification in Andersen-Tawil syndrome type 1. J Am Coll Cardiol  2020;75:1772–84. PubMed

Wang  DW, Crotti  L, Shimizu  W, Pedrazzini  M, Cantu  FD, Filippo  P  et al.  Malignant perinatal variant of long-QT syndrome caused by a profoundly dysfunctional cardiac sodium channel. Circ Arrhythm Electrophysiol  2008;1:370–8. PubMed PMC

Crotti  L, Ghidoni  A, Insolia  R, Schwartz  PJ.  The role of the cardiac sodium channel in perinatal early infant mortality. Card Electrophysiol Clin  2014;6:749–59.

Makita  N, Behr  E, Shimizu  W, Horie  M, Sunami  A, Crotti  L  et al.  The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest  2008;118:2219–29. PubMed PMC

Rocchetti  M, Sala  L, Dreizehnter  L, Crotti  L, Sinnecker  D, Mura  M  et al.  Elucidating arrhythmogenic mechanisms of long-QT syndrome CALM1-F142L mutation in patient-specific induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res  2017;113:531–41. PubMed

Schwartz  PJ, Ackerman  MJ, Antzelevitch  C, Bezzina  CR, Borggrefe  M, Cuneo  BF  et al.  Inherited cardiac arrhythmias. Nat Rev Dis Primers  2020;6:58. PubMed PMC

Dagradi  F, Spazzolini  C, Castelletti  S, Pedrazzini  M, Kotta  MC, Crotti  L  et al.  Exercise training-induced repolarization abnormalities masquerading as congenital long QT syndrome. Circulation  2020;142:2405–15. PubMed

Priori  SG, Napolitano  C, Schwartz  PJ.  Low penetrance in the long-QT syndrome: clinical impact. Circulation  1999;99:529–33. PubMed

Shimizu  W, Noda  T, Takaki  H, Kurita  T, Nagaya  N, Satomi  K  et al.  Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. J Am Coll Cardiol  2003;41:633–42. PubMed

Goldenberg  I, Horr  S, Moss  AJ, Lopes  CM, Barsheshet  A, McNitt  S  et al.  Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol  2011;57:51–9. PubMed PMC

Mazzanti  A, Maragna  R, Vacanti  G, Monteforte  N, Bloise  R, Marino  M  et al.  Interplay between genetic substrate, QTc duration, and arrhythmia risk in patients with long QT syndrome. J Am Coll Cardiol  2018;71:1663–71. PubMed

Shimizu  W, Moss  AJ, Wilde  AA, Towbin  JA, Ackerman  MJ, January  CT  et al.  Genotype-phenotype aspects of type 2 long QT syndrome. J Am Coll Cardiol  2009;54:2052–62. PubMed PMC

Schwartz  PJ, Moreno  C, Kotta  MC, Pedrazzini  M, Crotti  L, Dagradi  F  et al.  Mutation location and IKs regulation in the arrhythmic risk of long QT syndrome type 1: the importance of the KCNQ1 S6 region. Eur Heart J  2021;42:4743–55. PubMed PMC

Moss  AJ, Shimizu  W, Wilde  AA, Towbin  JA, Zareba  W, Robinson  JL  et al.  Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation  2007;115:2481–9. PubMed PMC

Crotti  L, Spazzolini  C, Schwartz  PJ, Shimizu  W, Denjoy  I, Schulze-Bahr  E  et al.  The common long-QT syndrome mutation KCNQ1/A341V causes unusually severe clinical manifestations in patients with different ethnic backgrounds: toward a mutation-specific risk stratification. Circulation  2007;116:2366–75. PubMed

Wilde  AA, Moss  AJ, Kaufman  ES, Shimizu  W, Peterson  DR, Benhorin  J  et al.  Clinical aspects of type 3 long-QT syndrome: an International Multicenter Study. Circulation  2016;134:872–82. PubMed PMC

Lee  YK, Sala  L, Mura  M, Rocchetti  M, Pedrazzini  M, Ran  X  et al.  MTMR4 SNVs modulate ion channel degradation and clinical severity in congenital long QT syndrome: insights in the mechanism of action of protective modifier genes. Cardiovasc Res  2021;117:767–79. PubMed PMC

Vincent  GM, Schwartz  PJ, Denjoy  I, Swan  H, Bithell  C, Spazzolini  C  et al.  High efficacy of beta-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of beta-blocker treatment “failures”. Circulation  2009;119:215–21. PubMed

Barsheshet  A, Goldenberg  I, O-Uchi  J, Moss  AJ, Jons  C, Shimizu  W  et al.  Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to beta-blocker therapy in type 1 long-QT syndrome. Circulation  2012;125:1988–96. PubMed PMC

Schwartz  PJ, Priori  SG, Cerrone  M, Spazzolini  C, Odero  A, Napolitano  C  et al.  Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation  2004;109:1826–33. PubMed

Dusi  V, Pugliese  L, De Ferrari  GM, Odero  A, Crotti  L, Dagradi  F  et al.  Left cardiac sympathetic denervation for long QT syndrome: 50 years’ experience provides guidance for management. JACC Clin Electrophysiol  2021;10.1016/j.jacep.2021.09.002. PubMed DOI

Etheridge  SP, Compton  SJ, Tristani-Firouzi  M, Mason  JW.  A new oral therapy for long QT syndrome: long-term oral potassium improves repolarization in patients with HERG mutations. J Am Coll Cardiol  2003;42:1777–82. PubMed

Schwartz  PJ, Priori  SG, Spazzolini  C, Moss  AJ, Vincent  GM, Napolitano  C  et al.  Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation  2001;103:89–95. PubMed

Wilde  AA, Jongbloed  RJ, Doevendans  PA, Düren  DR, Hauer  RN, van Langen  IM  et al.  Auditory stimuli as a trigger for arrhythmic events differentiate HERG-related (LQTS2) patients from KVLQT1-related patients (LQTS1). J Am Coll Cardiol  1999;33:327–32. PubMed

Khositseth  A, Tester  DJ, Will  ML, Bell  CM, Ackerman  MJ.  Identification of a common genetic substrate underlying postpartum cardiac events in congenital long QT syndrome. Heart Rhythm  2004;1:60–4. PubMed

Schwartz  PJ, Priori  SG, Locati  EH, Napolitano  C, Cantu  F, Towbin  JA  et al.  Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation  1995;92:3381–6. PubMed

Mazzanti  A, Maragna  R, Faragli  A, Monteforte  N, Bloise  R, Memmi  M  et al.  Gene-specific therapy with mexiletine reduces arrhythmic events in patients with long QT syndrome type 3. J Am Coll Cardiol  2016;67:1053–8. PubMed PMC

Funasako  M, Aiba  T, Ishibashi  K, Nakajima  I, Miyamoto  K, Inoue  Y  et al.  Pronounced shortening of QT interval with mexiletine infusion test in patients with type 3 congenital long QT syndrome. Circ J  2016;80:340–5. PubMed

Bos  JM, Crotti  L, Rohatgi  RK, Castelletti  S, Dagradi  F, Schwartz  PJ  et al.  Mexiletine shortens the QT interval in patients with potassium channel-mediated type 2 long QT syndrome. Circ Arrhythm Electrophysiol  2019;12:e007280. PubMed

Mehta  A, Ramachandra  CJA, Singh  P, Chitre  A, Lua  CH, Mura  M  et al.  Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur Heart J  2018;39:1446–55. PubMed

Schwartz  PJ, Gnecchi  M, Dagradi  F, Castelletti  S, Parati  G, Spazzolini  C  et al.  From patient-specific induced pluripotent stem cells to clinical translation in long QT syndrome Type 2. Eur Heart J  2019;40:1832–6. PubMed

Schwartz  PJ, Woosley  RL.  Predicting the unpredictable: drug-induced QT prolongation and Torsades de Pointes. J Am Coll Cardiol  2016;67:1639–50. PubMed

Kääb  S, Crawford  DC, Sinner  MF, Behr  ER, Kannankeril  PJ, Wilde  AA  et al.  A large candidate gene survey identifies the KCNE1 D85N polymorphism as a possible modulator of drug-induced torsades de pointes. Circ Cardiovasc Genet  2012;5:91–9. PubMed PMC

Strauss  DG, Vicente  J, Johannesen  L, Blinova  K, Mason  JW, Weeke  P  et al.  Common genetic variant risk score is associated with drug-induced QT prolongation and Torsade de Pointes risk: a pilot study. Circulation  2017;135:1300–10. PubMed PMC

Lahat  H, Pras  E, Eldar  M.  A missense mutation in CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Ann Med  2004;36(Suppl 1):87–91. PubMed

Roux-Buisson  N, Cacheux  M, Fourest-Lieuvin  A, Fauconnier  J, Brocard  J, Denjoy  I  et al.  Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet  2012;21:2759–67. PubMed PMC

Devalla  HD, Gélinas  R, Aburawi  EH, Beqqali  A, Goyette  P, Freund  C  et al.  TECRL, a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT. EMBO Mol Med  2016;8:1390–408. PubMed PMC

Webster  G, Aburawi  EH, Chaix  MA, Chandler  S, Foo  R, Islam  A  et al.  Life-threatening arrhythmias with autosomal recessive TECRL variants. Europace  2021;23:781–8. PubMed PMC

Medeiros-Domingo  A, Bhuiyan  ZA, Tester  DJ, Hofman  N, Bikker  H, van Tintelen  JP  et al.  The RYR2-encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis. J Am Coll Cardiol  2009;54:2065–74. PubMed PMC

Laurent  G, Saal  S, Amarouch  MY, Béziau  DM, Marsman  RF, Faivre  L  et al.  Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J Am Coll Cardiol  2012;60:144–56. PubMed

Swan  H, Amarouch  MY, Leinonen  J, Marjamaa  A, Kucera  JP, Laitinen-Forsblom  PJ  et al.  Gain-of-function mutation of the SCN5A gene causes exercise-induced polymorphic ventricular arrhythmias. Circ Cardiovasc Genet  2014;7:771–81. PubMed

Tester  DJ, Ackerman  JP, Giudicessi  JR, Ackerman  NC, Cerrone  M, Delmar  M  et al.  Plakophilin-2 truncation variants in patients clinically diagnosed with catecholaminergic polymorphic ventricular tachycardia and decedents with exercise-associated autopsy negative sudden unexplained death in the young. JACC Clin Electrophysiol  2019;5:120–7. PubMed PMC

Hayashi  M, Denjoy  I, Extramiana  F, Maltret  A, Buisson  NR, Lupoglazoff  J-M  et al.  Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation  2009;119:2426–34. PubMed

van der Werf  C, Nederend  I, Hofman  N, van Geloven  N, Ebink  C, Frohn-Mulder  IM  et al.  Familial evaluation in catecholaminergic polymorphic ventricular tachycardia: disease penetrance and expression in cardiac ryanodine receptor mutation-carrying relatives. Circ Arrhythm Electrophysiol  2012;5:748–56. PubMed

Giudicessi  JR, Lieve  KVV, Rohatgi  RK, Koca  F, Tester  DJ, van der Werf  C  et al.  Assessment and validation of a phenotype-enhanced variant classification framework to promote or demote RYR2 missense variants of uncertain significance. Circ Genom Precis Med  2019;12:e002510. PubMed

Coumel  P.  Catecholaminergic-induced severe ventricular arrhythmias with Adams-Stokes syndrome in children: report of four cases. Br Heart J  1978;40:28–37.

Leenhardt  A, Lucet  V, Denjoy  I, Grau  F, Ngoc  DD, Coumel  P.  Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation  1995;91:1512–9. PubMed

Tester  DJ, Spoon  DB, Valdivia  HH, Makielski  JC, Ackerman  MJ.  Targeted mutational analysis of the RyR2-encoded cardiac ryanodine receptor in sudden unexplained death: a molecular autopsy of 49 medical examiner/coroner's cases. Mayo Clin Proc  2004;79:1380–4. PubMed

Krahn  AD, Healey  JS, Simpson  CS, Chauhan  VS, Birnie  DH, Champagne  J  et al.  Sentinel symptoms in patients with unexplained cardiac arrest: from the cardiac arrest survivors with preserved ejection fraction registry (CASPER). J Cardiovasc Electrophysiol  2012;23:60–6. PubMed

Rucinski  C, Winbo  A, Marcondes  L, Earle  N, Stiles  M, Stiles  R  et al.  A population-based registry of patients with inherited cardiac conditions and resuscitated cardiac arrest. J Am Coll Cardiol  2020;75:2698–707. PubMed

Leinonen  JT, Crotti  L, Djupsjöbacka  A, Castelletti  S, Junna  N, Ghidoni  A  et al.  The genetics underlying idiopathic ventricular fibrillation: a special role for catecholaminergic polymorphic ventricular tachycardia?  Int J Cardiol  2018;250:139–45. PubMed

Tester  DJ, Dura  M, Carturan  E, Reiken  S, Wronska  A, Marks  AR  et al.  A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm  2007;4:733–9. PubMed PMC

Priori  SG, Napolitano  C, Tiso  N, Memmi  M, Vignati  G, Bloise  R  et al.  Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation  2001;103:196–200. PubMed

Laitinen  PJ, Brown  KM, Piippo  K, Swan  H, Devaney  JM, Brahmbhatt  B  et al.  Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation  2001;103:485–90. PubMed

Sun  B, Yao  J, Ni  M, Wei  J, Zhong  X, Guo  W  et al.  Cardiac ryanodine receptor calcium release deficiency syndrome. Sci Transl Med  2021;13:eaba7287. PubMed

Roston  TM, Wei  J, Guo  W, Li  Y, Zhong  X, Wang  R  et al.  Clinical and functional characterization of ryanodine receptor 2 variants implicated in calcium-release deficiency syndrome. JAMA Cardiol  2022;7:84–92. PubMed PMC

Tester  DJ, Arya  P, Will  M, Haglund  CM, Farley  AL, Makielski  JC  et al.  Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing. Heart Rhythm  2006;3:800–5. PubMed

Kapplinger  JD, Pundi  KN, Larson  NB, Callis  TE, Tester  DJ, Bikker  H  et al.  Yield of the RYR2 genetic test in suspected catecholaminergic polymorphic ventricular tachycardia and implications for test interpretation. Circ Genom Precis Med  2018;11:e001424. PubMed PMC

Gray  B, Bagnall  RD, Lam  L, Ingles  J, Turner  C, Haan  E  et al.  A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm  2016;13:1652–60. PubMed PMC

Ng  K, Titus  EW, Lieve  KV, Roston  TM, Mazzanti  A, Deiter  FH  et al.  An international multicenter evaluation of inheritance patterns, arrhythmic risks, and underlying mechanisms of CASQ2-catecholaminergic polymorphic ventricular tachycardia. Circulation  2020;142:932–47. PubMed PMC

van der Werf  C, Zwinderman  AH, Wilde  AA.  Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace  2012;14:175–83. PubMed

Kannankeril  PJ, Moore  JP, Cerrone  M, Priori  SG, Kertesz  NJ, Ro  PS  et al.  Efficacy of flecainide in the treatment of catecholaminergic polymorphic ventricular tachycardia: a randomized clinical trial. JAMA Cardiol  2017;2:759–66. PubMed PMC

De Ferrari  GM, Dusi  V, Spazzolini  C, Bos  JM, Abrams  DJ, Berul  CI  et al.  Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation  2015;131:2185–93. PubMed

van der Werf  C, Lieve  KV, Bos  JM, Lane  CM, Denjoy  I, Roses-Noguer  F  et al.  Implantable cardioverter-defibrillators in previously undiagnosed patients with catecholaminergic polymorphic ventricular tachycardia resuscitated from sudden cardiac arrest. Eur Heart J  2019;40:2953–61. PubMed

Yang  Y, Hu  D, Sacher  F, Kusano  KF, Li  X, Barajas-Martinez  H  et al.  Meta-analysis of risk stratification of SCN5A with Brugada syndrome: is SCN5A always a marker of low risk?  Front Physiol  2019;10:103. PubMed PMC

Walsh  R, Lahrouchi  N, Tadros  R, Kyndt  F, Glinge  C, Postema  PG  et al.  Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genet Med  2021;23:47–58. PubMed PMC

Postema  PG.  About Brugada syndrome and its prevalence. Europace  2012;14:925–8. PubMed

Milman  A, Andorin  A, Gourraud  JB, Postema  PG, Sacher  F, Mabo  P  et al.  Profile of patients with Brugada syndrome presenting with their first documented arrhythmic event: data from the Survey on Arrhythmic Events in BRUgada Syndrome (SABRUS). Heart Rhythm  2018;15:716–24. PubMed

Kim  YG, Oh  SK, Choi  HY, Choi  JI.  Inherited arrhythmia syndrome predisposing to sudden cardiac death. Korean J Intern Med  2021;36:527–38. PubMed PMC

Papadakis  M, Papatheodorou  E, Mellor  G, Raju  H, Bastiaenen  R, Wijeyeratne  Y  et al.  The diagnostic yield of Brugada syndrome after sudden death with normal autopsy. J Am Coll Cardiol  2018;71:1204–14. PubMed

Tadros  R, Nannenberg  EA, Lieve  KV, Skoric-Milosavljevic  D, Lahrouchi  N, Lekanne Deprez  RH  et al.  Yield and pitfalls of ajmaline testing in the evaluation of unexplained cardiac arrest and sudden unexplained death: single-center experience with 482 families. JACC Clin Electrophysiol  2017;3:1400–8. PubMed

Shimizu  W, Matsuo  K, Takagi  M, Tanabe  Y, Aiba  T, Taguchi  A  et al.  Body surface distribution and response to drugs of ST segment elevation in Brugada syndrome: clinical implication of eighty-seven-lead body surface potential mapping and its application to twelve-lead electrocardiograms. J Cardiovasc Electrophysiol  2000;11:396–404. PubMed

Viskin  S, Rosso  R, Friedensohn  L, Havakuk  O, Wilde  AA.  Everybody has Brugada syndrome until proven otherwise?  Heart Rhythm  2015;12:1595–8. PubMed

Antzelevitch  C, Yan  GX, Ackerman  MJ, Borggrefe  M, Corrado  D, Guo  J  et al.  J-Wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge. Europace  2017;19:665–94. PubMed PMC

Baranchuk  A, Nguyen  T, Ryu  MH, Femenia  F, Zareba  W, Wilde  AA  et al.  Brugada phenocopy: new terminology and proposed classification. Ann Noninvasive Electrocardiol  2012;17:299–314. PubMed PMC

Probst  V, Veltmann  C, Eckardt  L, Meregalli  PG, Gaita  F, Tan  HL  et al.  Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry. Circulation  2010;121:635–43. PubMed

Lahrouchi  N, Talajic  M, Tadros  R.  Risk of arrhythmic events in drug-induced Brugada syndrome. Heart Rhythm  2017;14:1434–5. PubMed

Postema  PG, Wolpert  C, Amin  AS, Probst  V, Borggrefe  M, Roden  DM  et al.  Drugs and Brugada syndrome patients: review of the literature, recommendations, and an up-to-date website (www.brugadadrugs.org). Heart Rhythm  2009;6:1335–41. PubMed PMC

Probst  V, Wilde  AA, Barc  J, Sacher  F, Babuty  D, Mabo  P  et al.  SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ Cardiovasc Genet  2009;2:552–7. PubMed

Peltenburg  PJ, Blom  NA, Vink  AS, Kammeraad  JAE, Breur  H, Rammeloo  LAJ  et al.  In children and adolescents from Brugada syndrome-families, only SCN5A mutation carriers develop a type-1 ECG pattern induced by fever. Circulation  2020;142:89–91. PubMed

Bezzina  C, Veldkamp  MW, van Den Berg  MP, Postma  AV, Rook  MB, Viersma  JW  et al.  A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res  1999;85:1206–13. PubMed

Sacilotto  L, Scanavacca  MI, Olivetti  N, Lemes  C, Pessente  GD, Wulkan  F  et al.  Low rate of life-threatening events and limitations in predicting invasive and noninvasive markers of symptoms in a cohort of type 1 Brugada syndrome patients: data and insights from the GenBra registry. J Cardiovasc Electrophysiol  2020;31:2920–8. PubMed

Yamagata  K, Horie  M, Aiba  T, Ogawa  S, Aizawa  Y, Ohe  T  et al.  Genotype-phenotype correlation of SCN5A mutation for the clinical and electrocardiographic characteristics of probands with brugada syndrome: a Japanese Multicenter Registry. Circulation  2017;135:2255–70. PubMed

Ciconte  G, Monasky  MM, Santinelli  V, Micaglio  E, Vicedomini  G, Anastasia  L  et al.  Brugada syndrome genetics is associated with phenotype severity. Eur Heart J  2021;42:1082–90. PubMed PMC

Kusumoto  FM, Schoenfeld  MH, Barrett  C, Edgerton  JR, Ellenbogen  KA, Gold  MR  et al.  2018 ACC/AHA/HRS Guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, and the Heart Rhythm Society. Circulation  2019;140:e333–81. PubMed

Surawicz  B, Childers  R, Deal  BJ, Gettes  LS, Bailey  JJ, Gorgels  A  et al.  AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part III: intraventricular conduction disturbances: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol  2009;53:976–81. PubMed

Asatryan  B, Medeiros-Domingo  A.  Molecular and genetic insights into progressive cardiac conduction disease. Europace  2019;21:1145–58. PubMed

Neu  A, Eiselt  M, Paul  M, Sauter  K, Stallmeyer  B, Isbrandt  D  et al.  A homozygous SCN5A mutation in a severe, recessive type of cardiac conduction disease. Hum Mutat  2010;31:E1609–21. PubMed

Benson  DW, Wang  DW, Dyment  M, Knilans  TK, Fish  FA, Strieper  MJ  et al.  Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest  2003;112:1019–28. PubMed PMC

Kyndt  F, Probst  V, Potet  F, Demolombe  S, Chevallier  JC, Baro  I  et al.  Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation  2001;104:3081–6. PubMed

Fatkin  D, MacRae  C, Sasaki  T, Wolff  MR, Porcu  M, Frenneaux  M  et al.  Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med  1999;341:1715–24. PubMed

Birnie  DH, Sauer  WH, Bogun  F, Cooper  JM, Culver  DA, Duvernoy  CS  et al.  HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm  2014;11:1305–23. PubMed

Akhtar  M, Elliott  PM.  Risk stratification for sudden cardiac death in non-ischaemic dilated cardiomyopathy. Curr Cardiol Rep  2019;21:155. PubMed PMC

Wahbi  K, Ben Yaou  R, Gandjbakhch  E, Anselme  F, Gossios  T, Lakdawala  NK  et al.  Development and validation of a new risk prediction score for life-threatening ventricular tachyarrhythmias in laminopathies. Circulation  2019;140:293–302. PubMed

Van Rijsingen  IAW, Arbustini  E, Elliott  PM, Mogensen  J, Hermans-Van Ast  JF, Van Der Kooi  AJ  et al.  Risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers a European cohort study. J Am Coll Cardiol  2012;59:493–500. PubMed

Nakajima  K, Aiba  T, Makiyama  T, Nishiuchi  S, Ohno  S, Kato  K  et al.  Clinical manifestations and long-term mortality in lamin A/C mutation carriers from a Japanese Multicenter Registry. Circ J  2018;82:2707–14. PubMed

Tan  RB, Gando  I, Bu  L, Cecchin  F, Coetzee  W.  A homozygous SCN5A mutation associated with atrial standstill and sudden death. Pacing Clin Electrophysiol  2018;41:1036–42. PubMed

Makita  N, Sasaki  K, Groenewegen  WA, Yokota  T, Yokoshiki  H, Murakami  T  et al.  Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm  2005;2:1128–34. PubMed

Kruse  M, Schulze-Bahr  E, Corfield  V, Beckmann  A, Stallmeyer  B, Kurtbay  G  et al.  Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest  2009;119:2737–44. PubMed PMC

Daumy  X, Amarouch  MY, Lindenbaum  P, Bonnaud  S, Charpentier  E, Bianchi  B  et al.  Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I. Int J Cardiol  2016;207:349–58. PubMed

Kamdar  F, Garry  DJ.  Dystrophin-deficient cardiomyopathy. J Am Coll Cardiol  2016;67:2533–46. PubMed

Brook  JD, McCurrach  ME, Harley  HG, Buckler  AJ, Church  D, Aburatani  H  et al.  Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell  1992;69:385. PubMed

Bonne  G, Quijano-Roy  S.  Emery-Dreifuss muscular dystrophy, laminopathies, and other nuclear envelopathies. Handb Clin Neurol  2013;113:1367–76. PubMed

Ishikawa  T, Mishima  H, Barc  J, Takahashi  MP, Hirono  K, Terada  S  et al.  Cardiac emerinopathy: a nonsyndromic nuclear envelopathy with increased risk of thromboembolic stroke due to progressive atrial standstill and left ventricular noncompaction. Circ Arrhythm Electrophysiol  2020;13:e008712. PubMed

Cenacchi  G, Papa  V, Pegoraro  V, Marozzo  R, Fanin  M, Angelini  C.  Review: Danon disease: review of natural history and recent advances. Neuropathol Appl Neurobiol  2020;46:303–22. PubMed

Arbustini  E, Di Toro  A, Giuliani  L, Favalli  V, Narula  N, Grasso  M.  Cardiac phenotypes in hereditary muscle disorders: JACC state-of-the-art review. J Am Coll Cardiol  2018;72:2485–506. PubMed

Hu  D, Hu  D, Liu  L, Barr  D, Liu  Y, Balderrabano-Saucedo  N  et al.  Identification, clinical manifestation and structural mechanisms of mutations in AMPK associated cardiac glycogen storage disease. EBioMedicine  2020;54:102723. PubMed PMC

Theis  JL, Zimmermann  MT, Larsen  BT, Rybakova  IN, Long  PA, Evans  JM  et al.  TNNI3K mutation in familial syndrome of conduction system disease, atrial tachyarrhythmia and dilated cardiomyopathy. Hum Mol Genet  2014;23:5793–804. PubMed PMC

Seki  A, Ishikawa  T, Daumy  X, Mishima  H, Barc  J, Sasaki  R  et al.  Progressive atrial conduction defects associated with bone malformation caused by a connexin-45 mutation. J Am Coll Cardiol  2017;70:358–70. PubMed

Limongelli  G, Masarone  D, Pacileo  G.  Mitochondrial disease and the heart. Heart  2017;103:390–8. PubMed

Priori  SG, Pandit  SV, Rivolta  I, Berenfeld  O, Ronchetti  E, Dhamoon  A  et al.  A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res  2005;96:800–7. PubMed

Templin  C, Ghadri  JR, Rougier  JS, Baumer  A, Kaplan  V, Albesa  M  et al.  Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur Heart J  2011;32:1077–88. PubMed PMC

Gollob  MH, Redpath  CJ, Roberts  JD.  The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol  2011;57:802–12. PubMed

Giustetto  C, Scrocco  C, Schimpf  R, Maury  P, Mazzanti  A, Levetto  M  et al.  Usefulness of exercise test in the diagnosis of short QT syndrome. Europace  2015;17:628–34. PubMed

Brugada  R, Hong  K, Dumaine  R, Cordeiro  J, Gaita  F, Borggrefe  M  et al.  Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation  2004;109:30–5. PubMed

Bellocq  C, van Ginneken  AC, Bezzina  CR, Alders  M, Escande  D, Mannens  MM  et al.  Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation  2004;109:2394–7. PubMed

Thorsen  K, Dam  VS, Kjaer-Sorensen  K, Pedersen  LN, Skeberdis  VA, Jurevicius  J  et al.  Loss-of-activity-mutation in the cardiac chloride-bicarbonate exchanger AE3 causes short QT syndrome. Nat Commun  2017;8:1696. PubMed PMC

Antzelevitch  C, Pollevick  GD, Cordeiro  JM, Casis  O, Sanguinetti  MC, Aizawa  Y  et al.  Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation  2007;115:442–9. PubMed PMC

Hancox  JC, Whittaker  DG, Du  C, Stuart  AG, Zhang  H.  Emerging therapeutic targets in the short QT syndrome. Expert Opin Ther Targets  2018;22:439–51. PubMed

Nezu  J, Tamai  I, Oku  A, Ohashi  R, Yabuuchi  H, Hashimoto  N  et al.  Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet  1999;21:91–4. PubMed

Roussel  J, Labarthe  F, Thireau  J, Ferro  F, Farah  C, Roy  J  et al.  Carnitine deficiency induces a short QT syndrome. Heart Rhythm  2016;13:165–74. PubMed

Gélinas  R, Leach  E, Horvath  G, Laksman  Z.  Molecular autopsy implicates primary carnitine deficiency in sudden unexplained death and reversible short QT syndrome. Can J Cardiol  2019;35:1256.e1–2. PubMed

Giustetto  C, Schimpf  R, Mazzanti  A, Scrocco  C, Maury  P, Anttonen  O  et al.  Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol  2011;58:587–95. PubMed

Hu  D, Li  Y, Zhang  J, Pfeiffer  R, Gollob  MH, Healey  J  et al.  The phenotypic spectrum of a mutation hotspot responsible for the short QT syndrome. JACC Clin Electrophysiol  2017;3:727–43. PubMed

Mazzanti  A, Maragna  R, Vacanti  G, Kostopoulou  A, Marino  M, Monteforte  N  et al.  Hydroquinidine prevents life-threatening arrhythmic events in patients with short QT syndrome. J Am Coll Cardiol  2017;70:3010–5. PubMed

Raschwitz  LS, El-Battrawy  I, Schlentrich  K, Besler  J, Veith  M, Roterberg  G  et al.  Differences in short QT syndrome subtypes: a systematic literature review and pooled analysis. Front Genet  2019;10:1312. PubMed PMC

Harrell  DT, Ashihara  T, Ishikawa  T, Tominaga  I, Mazzanti  A, Takahashi  K  et al.  Genotype-dependent differences in age of manifestation and arrhythmia complications in short QT syndrome. Int J Cardiol  2015;190:393–402. PubMed

Morita  H, Kusano-Fukushima  K, Nagase  S, Fujimoto  Y, Hisamatsu  K, Fujio  H  et al.  Atrial fibrillation and atrial vulnerability in patients with Brugada syndrome. J Am Coll Cardiol  2002;40:1437–44. PubMed

Olson  TM, Michels  VV, Ballew  JD, Reyna  SP, Karst  ML, Herron  KJ  et al.  Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA  2005;293:447–54. PubMed PMC

McNair  WP, Ku  L, Taylor  MR, Fain  PR, Dao  D, Wolfel  E  et al. ; Familial Cardiomyopathy Registry Research Group . SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation  2004;110:2163–7. PubMed

Li  Q, Huang  H, Liu  G, Lam  K, Rutberg  J, Green  MS  et al.  Gain-of-function mutation of Nav1.5 in atrial fibrillation enhances cellular excitability and lowers the threshold for action potential firing. Biochem Biophys Res Commun  2009;380:132–7. PubMed

Chen  YH, Xu  SJ, Bendahhou  S, Wang  XL, Wang  Y, Xu  WY  et al.  KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science  2003;299:251–4. PubMed

Orr  N, Arnaout  R, Gula  LJ, Spears  DA, Leong-Sit  P, Li  Q  et al.  A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation. Nat Commun  2016;7:11303. PubMed PMC

Kumar  S, Baldinger  SH, Gandjbakhch  E, Maury  P, Sellal  JM, Androulakis  AF  et al.  Long-term arrhythmic and nonarrhythmic outcomes of lamin A/C mutation carriers. J Am Coll Cardiol  2016;68:2299–307. PubMed

Choi  SH, Weng  LC, Roselli  C, Lin  H, Haggerty  CM, Shoemaker  MB  et al. ; For the DiscovEHR study and the NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium . Association between titin loss-of-function variants and early-onset atrial fibrillation. JAMA  2018;320:2354–64. PubMed PMC

Yoneda  ZT, Anderson  KC, Quintana  JA, O'Neill  MJ, Sims  RA, Glazer  AM  et al.  Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes. JAMA Cardiol  2021;6:1371–9. PubMed PMC

Goodyer  WR, Dunn  K, Caleshu  C, Jackson  M, Wylie  J, Moscarello  T  et al.  Broad genetic testing in a clinical setting uncovers a high prevalence of titin loss-of-function variants in very early onset atrial fibrillation. Circ Genom Precis Med  2019;12:e002713. PubMed PMC

Roberts  R.  Mechanisms of disease: genetic mechanisms of atrial fibrillation. Nat Clin Pract Cardiovasc Med  2006;3:276–82. PubMed

Darbar  D, Herron  KJ, Ballew  JD, Jahangir  A, Gersh  BJ, Shen  WK  et al.  Familial atrial fibrillation is a genetically heterogeneous disorder. J Am Coll Cardiol  2003;41:2185–92. PubMed

Sébillon  P, Bouchier  C, Bidot  LD, Bonne  G, Ahamed  K, Charron  P  et al.  Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J Med Genet  2003;40:560–7. PubMed PMC

Mohler  PJ, Schott  JJ, Gramolini  AO, Dilly  KW, Guatimosim  S, duBell  WH  et al.  Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature  2003;421:634–9. PubMed

Hong  K, Piper  DR, Diaz-Valdecantos  A, Brugada  J, Oliva  A, Burashnikov  E  et al.  De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res  2005;68:433–40. PubMed

Bhuiyan  ZA, van den Berg  MP, van Tintelen  JP, Bink-Boelkens  MT, Wiesfeld  AC, Alders  M  et al.  Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation  2007;116:1569–76. PubMed

Sy  RW, Gollob  MH, Klein  GJ, Yee  R, Skanes  AC, Gula  LJ  et al.  Arrhythmia characterization and long-term outcomes in catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm  2011;8:864–71. PubMed

Gillmore  JD, Booth  DR, Pepys  MB, Hawkins  PN.  Hereditary cardiac amyloidosis associated with the transthyretin Ile122 mutation in a white man. Heart  1999;82:e2. PubMed PMC

Gutierrez-Roelens  I, De Roy  L, Ovaert  C, Sluysmans  T, Devriendt  K, Brunner  HG  et al.  A novel CSX/NKX2-5 mutation causes autosomal-dominant AV block: are atrial fibrillation and syncopes part of the phenotype?  Eur J Hum Genet  2006;14:1313–6. PubMed

Gollob  MH, Seger  JJ, Gollob  TN, Tapscott  T, Gonzales  O, Bachinski  L  et al.  Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation  2001;104:3030–3. PubMed

Fuster  V, Rydén  LE, Cannom  DS, Crijns  HJ, Curtis  AB, Ellenbogen  KA  et al.  2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J Am Coll Cardiol  2011;57:e101–98. PubMed

Olson  TM, Alekseev  AE, Liu  XK, Park  S, Zingman  LV, Bienengraeber  M  et al.  Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet  2006;15:2185–91. PubMed

Deo  M, Ruan  Y, Pandit  SV, Shah  K, Berenfeld  O, Blaufox  A  et al.  KCNJ2 mutation in short QT syndrome 3 results in atrial fibrillation and ventricular proarrhythmia. Proc Natl Acad Sci USA  2013;110:4291–6. PubMed PMC

Hong  K, Bjerregaard  P, Gussak  I, Brugada  R.  Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol  2005;16:394–6. PubMed

Li  RG, Xu  YJ, Ye  WG, Li  YJ, Chen  H, Qiu  XB  et al.  Connexin45 (GJC1) loss-of-function mutation contributes to familial atrial fibrillation and conduction disease. Heart Rhythm  2021;18:684–93. PubMed

Hodgson-Zingman  DM, Karst  ML, Zingman  LV, Heublein  DM, Darbar  D, Herron  KJ  et al.  Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med  2008;359:158–65. PubMed PMC

Kusumoto  FM, Schoenfeld  MH, Barrett  C, Edgerton  JR, Ellenbogen  KA, Gold  MR  et al.  2018 ACC/AHA/HRS Guideline on the evaluation and management of patients with Bradycardia and cardiac conduction delay: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation  2019;140:e382–482. PubMed

Jensen  MT, Wod  M, Galatius  S, Hjelmborg  JB, Jensen  GB, Christensen  K.  Heritability of resting heart rate and association with mortality in middle-aged and elderly twins. Heart  2018;104:30–6. PubMed PMC

Holm  H, Gudbjartsson  DF, Arnar  DO, Thorleifsson  G, Thorgeirsson  G, Stefansdottir  H  et al.  Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet  2010;42:117–22. PubMed

Holm  H, Gudbjartsson  DF, Sulem  P, Masson  G, Helgadottir  HT, Zanon  C  et al.  A rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nat Genet  2011;43:316–20. PubMed PMC

Ramirez  J, Duijvenboden  SV, Ntalla  I, Mifsud  B, Warren  HR, Tzanis  E  et al.  Thirty loci identified for heart rate response to exercise and recovery implicate autonomic nervous system. Nat Commun  2018;9:1947. PubMed PMC

Kusumoto  FM, Schoenfeld  MH, Barrett  C, Edgerton  JR, Ellenbogen  KA, Gold  MR  et al.  2018 ACC/AHA/HRS Guideline on the evaluation and management of patients with Bradycardia and cardiac conduction delay: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, and the Heart Rhythm Society. J Am Coll Cardiol  2019;74:932–87. PubMed

Veldkamp  MW, Wilders  R, Baartscheer  A, Zegers  JG, Bezzina  CR, Wilde  AA.  Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ Res  2003;92:976–83. PubMed

Chiang  DY, Kim  JJ, Valdes  SO, de la Uz  C, Fan  Y, Orcutt  J  et al.  Loss-of-function SCN5A mutations associated with sinus node dysfunction, atrial arrhythmias, and poor pacemaker capture. Circ Arrhythm Electrophysiol  2015;8:1105–12. PubMed PMC

Schulze-Bahr  E, Neu  A, Friederich  P, Kaupp  UB, Breithardt  G, Pongs  O  et al.  Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest  2003;111:1537–45. PubMed PMC

Milano  A, Vermeer  AM, Lodder  EM, Barc  J, Verkerk  AO, Postma  AV  et al.  HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol  2014;64:745–56. PubMed

Stallmeyer  B, Kuß  J, Kotthoff  S, Zumhagen  S, Vowinkel  K, Rinné  S  et al.  A mutation in the G-protein gene GNB2 causes familial sinus node and atrioventricular conduction dysfunction. Circ Res  2017;120:e33–44. PubMed

Righi  D, Silvetti  MS, Drago  F.  Sinus bradycardia, junctional rhythm, and low-rate atrial fibrillation in Short QT syndrome during 20 years of follow-up: three faces of the same genetic problem. Cardiol Young  2016;26:589–92. PubMed

Whittaker  DG, Colman  MA, Ni  H, Hancox  JC, Zhang  H.  Human atrial arrhythmogenesis and sinus bradycardia in KCNQ1-linked short QT syndrome: insights from computational modelling. Front Physiol  2018;9:1402. PubMed PMC

Kuß  J, Stallmeyer  B, Goldstein  M, Rinné  S, Pees  C, Zumhagen  S  et al.  Familial sinus node disease caused by a gain of GIRK (G-protein activated inwardly rectifying K(+) channel) channel function. Circ Genom Precis Med  2019;12:e002238. PubMed

Yamada  N, Asano  Y, Fujita  M, Yamazaki  S, Inanobe  A, Matsuura  N  et al.  Mutant KCNJ3 and KCNJ5 potassium channels as novel molecular targets in bradyarrhythmias and atrial fibrillation. Circulation  2019;139:2157–69. PubMed

Arbel-Ganon  L, Behar  JA, Gomez  AM, Yaniv  Y.  Distinct mechanisms mediate pacemaker dysfunction associated with catecholaminergic polymorphic ventricular tachycardia mutations: insights from computational modeling. J Mol Cell Cardiol  2020;143:85–95. PubMed

Baig  SM, Koschak  A, Lieb  A, Gebhart  M, Dafinger  C, Nurnberg  G  et al.  Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci  2011;14:77–84. PubMed

Liaqat  K, Schrauwen  I, Raza  SI, Lee  K, Hussain  S, Chakchouk  I  et al. ; University of Washington Center for Mendelian Genomics . Identification of CACNA1D variants associated with sinoatrial node dysfunction and deafness in additional Pakistani families reveals a clinical significance. J Hum Genet  2019;64:153–60. PubMed PMC

Lodder  EM, De Nittis  P, Koopman  CD, Wiszniewski  W, Moura de Souza  CF, Lahrouchi  N  et al.  GNB5 mutations cause an autosomal-recessive multisystem syndrome with sinus bradycardia and cognitive disability. Am J Hum Genet  2016;99:786. PubMed PMC

Chetaille  P, Preuss  C, Burkhard  S, Cote  JM, Houde  C, Castilloux  J  et al. ; FORGE Canada Consortium . Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm. Nat Genet  2014;46:1245–9. PubMed

Kong  D, Zhan  Y, Liu  C, Hu  Y, Zhou  Y, Luo  J  et al.  A novel mutation of the EMD gene in a family with cardiac conduction abnormalities and a high incidence of sudden cardiac death. Pharmgenomics Pers Med  2019;12:319–27. PubMed PMC

Wasserburger  RH, Alt  WJ.  The normal RS-T segment elevation variant. Am J Cardiol  1961;8:184–92. PubMed

Tikkanen  JT, Anttonen  O, Junttila  MJ, Aro  AL, Kerola  T, Rissanen  HA  et al.  Long-term outcome associated with early repolarization on electrocardiography. N Engl J Med  2009;361:2529–37. PubMed

Rosso  R, Kogan  E, Belhassen  B, Rozovski  U, Scheinman  MM, Zeltser  D  et al.  J-point elevation in survivors of primary ventricular fibrillation and matched control subjects: incidence and clinical significance. J Am Coll Cardiol  2008;52:1231–8. PubMed

Haïssaguerre  M, Derval  N, Sacher  F, Jesel  L, Deisenhofer  I, de Roy  L  et al.  Sudden cardiac arrest associated with early repolarization. N Engl J Med  2008;358:2016–23. PubMed

Aizawa  Y, Chinushi  M, Hasegawa  K, Naiki  N, Horie  M, Kaneko  Y  et al.  Electrical storm in idiopathic ventricular fibrillation is associated with early repolarization. J Am Coll Cardiol  2013;62:1015–9. PubMed

Nam  GB, Kim  YH, Antzelevitch  C.  Augmentation of J waves and electrical storms in patients with early repolarization. N Engl J Med  2008;358:2078–9. PubMed PMC

Koncz  I, Gurabi  Z, Patocskai  B, Panama  BK, Szél  T, Hu  D  et al.  Mechanisms underlying the development of the electrocardiographic and arrhythmic manifestations of early repolarization syndrome. J Mol Cell Cardiol  2014;68:20–8. PubMed PMC

Ghosh  S, Cooper  DH, Vijayakumar  R, Zhang  J, Pollak  S, Haïssaguerre  M  et al.  Early repolarization associated with sudden death: insights from noninvasive electrocardiographic imaging. Heart Rhythm  2010;7:534–7. PubMed PMC

Nademanee  K, Haissaguerre  M, Hocini  M, Nogami  A, Cheniti  G, Duchateau  J  et al.  Mapping and ablation of ventricular fibrillation associated with early repolarization syndrome. Circulation  2019;140:1477–90. PubMed

Haïssaguerre  M, Nademanee  K, Hocini  M, Cheniti  G, Duchateau  J, Frontera  A  et al.  Depolarization versus repolarization abnormality underlying inferolateral J-wave syndromes: new concepts in sudden cardiac death with apparently normal hearts. Heart Rhythm  2019;16:781–90. PubMed PMC

Boukens  BJ, Benjacholamas  V, van Amersfoort  S, Meijborg  VM, Schumacher  C, Jensen  B  et al.  Structurally abnormal myocardium underlies ventricular fibrillation storms in a patient diagnosed with the early repolarization pattern. JACC Clin Electrophysiol  2020;6:1395–404. PubMed

Reinhard  W, Kaess  BM, Debiec  R, Nelson  CP, Stark  K, Tobin  MD  et al.  Heritability of early repolarization: a population-based study. Circ Cardiovasc Genet  2011;4:134–8. PubMed

Bastiaenen  R, Nolte  IM, Munroe  PB, Riese  H, Nelson  C, O'Connor  H  et al.  The narrow-sense and common single nucleotide polymorphism heritability of early repolarization. Int J Cardiol  2019;279:135–40. PubMed

Honarbakhsh  S, Srinivasan  N, Kirkby  C, Firman  E, Tobin  L, Finlay  M  et al.  Medium-term outcomes of idiopathic ventricular fibrillation survivors and family screening: a multicentre experience. Europace  2017;19:1874–80. PubMed

Nunn  LM, Bhar-Amato  J, Lowe  MD, Macfarlane  PW, Rogers  P, McKenna  WJ  et al.  Prevalence of J-point elevation in sudden arrhythmic death syndrome families. J Am Coll Cardiol  2011;58:286–90. PubMed

Mellor  G, Nelson  CP, Robb  C, Raju  H, Wijeyeratne  Y, Hengstenberg  C  et al.  The prevalence and significance of the early repolarization pattern in sudden arrhythmic death syndrome families. Circ Arrhythm Electrophysiol  2016;9:e003960. PubMed

Watanabe  H, Nogami  A, Ohkubo  K, Kawata  H, Hayashi  Y, Ishikawa  T  et al.  Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation associated with early repolarization. Circ Arrhythm Electrophysiol  2011;4:874–81. PubMed

Giudicessi  JR, Ye  D, Stutzman  MJ, Zhou  W, Tester  DJ, Ackerman  MJ.  Prevalence and electrophysiological phenotype of rare SCN5A genetic variants identified in unexplained sudden cardiac arrest survivors. Europace  2020;22:622–31. PubMed

Zhang  ZH, Barajas-Martínez  H, Xia  H, Li  B, Capra  JA, Clatot  J  et al.  Distinct features of probands with early repolarization and brugada syndromes carrying SCN5A pathogenic variants. J Am Coll Cardiol  2021;78:1603–17. PubMed PMC

Chauveau  S, Janin  A, Till  M, Morel  E, Chevalier  P, Millat  G.  Early repolarization syndrome caused by de novo duplication of KCND3 detected by next-generation sequencing. HeartRhythm Case Rep  2017;3:574–8. PubMed PMC

Takayama  K, Ohno  S, Ding  WG, Ashihara  T, Fukumoto  D, Wada  Y  et al.  A de novo gain-of-function KCND3 mutation in early repolarization syndrome. Heart Rhythm  2019;16:1698–706. PubMed

Teumer  A, Trenkwalder  T, Kessler  T, Jamshidi  Y, van den Berg  ME, Kaess  B  et al.  KCND3 potassium channel gene variant confers susceptibility to electrocardiographic early repolarization pattern. JCI Insight  2019;4:e131156. PubMed PMC

Barajas-Martínez  H, Hu  D, Ferrer  T, Onetti  CG, Wu  Y, Burashnikov  E  et al.  Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm  2012;9:548–55. PubMed PMC

Medeiros-Domingo  A, Tan  BH, Crotti  L, Tester  DJ, Eckhardt  L, Cuoretti  A  et al.  Gain-of-function mutation S422L in the KCNJ8-encoded cardiac K(ATP) channel Kir6.1 as a pathogenic substrate for J-wave syndromes. Heart Rhythm  2010;7:1466–71. PubMed PMC

Vidaillet  HJJr, Pressley  JC, Henke  E, Harrell  FEJr, German  LD.  Familial occurrence of accessory atrioventricular pathways (preexcitation syndrome). N Engl J Med  1987;317:65–9. PubMed

Deal  BJ, Keane  JF, Gillette  PC, Garson  AJr.  Wolff-Parkinson-White syndrome and supraventricular tachycardia during infancy: management and follow-up. J Am Coll Cardiol  1985;5:130–5. PubMed

MacRae  CA, Ghaisas  N, Kass  S, Donnelly  S, Basson  CT, Watkins  HC  et al.  Familial hypertrophic cardiomyopathy with Wolff-Parkinson-White syndrome maps to a locus on chromosome 7q3. J Clin Invest  1995;96:1216–20. PubMed PMC

Gollob  MH, Green  MS, Tang  AS, Gollob  T, Karibe  A, Ali Hassan  AS  et al.  Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med  2001;344:1823–31. PubMed

Lopez-Sainz  A, Dominguez  F, Lopes  LR, Ochoa  JP, Barriales-Villa  R, Climent  V  et al. ; European Genetic Cardiomyopathies Initiative Investigators . Clinical features and natural history of PRKAG2 variant cardiac glycogenosis. J Am Coll Cardiol  2020;76:186–97. PubMed

Landstrom  AP, Parvatiyar  MS, Pinto  JR, Marquardt  ML, Bos  JM, Tester  DJ  et al.  Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol  2008;45:281–8. PubMed PMC

Geier  C, Gehmlich  K, Ehler  E, Hassfeld  S, Perrot  A, Hayess  K  et al.  Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum Mol Genet  2008;17:2753–65. PubMed

Landstrom  AP, Weisleder  N, Batalden  KB, Bos  JM, Tester  DJ, Ommen  SR  et al.  Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J Mol Cell Cardiol  2007;42:1026–35. PubMed PMC

Al Senaidi  K, Joshi  N, Al-Nabhani  M, Al-Kasbi  G, Al Farqani  A, Al-Thihli  K  et al.  Phenotypic spectrum of ALPK3-related cardiomyopathy. Am J Med Genet A  2019;179:1235–40. PubMed

Ochoa  JP, Sabater-Molina  M, García-Pinilla  JM, Mogensen  J, Restrepo-Córdoba  A, Palomino-Doza  J  et al.  Formin homology 2 domain containing 3 (FHOD3) is a genetic basis for hypertrophic cardiomyopathy. J Am Coll Cardiol  2018;72:2457–67. PubMed

Alfares  AA, Kelly  MA, Mcdermott  G, Funke  BH, Lebo  MS, Baxter  SB  et al.  Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med  2015;17:880–8. PubMed

Ingles  J, Sarina  T, Yeates  L, Hunt  L, Macciocca  I, McCormack  L  et al.  Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy. Genet Med  2013;15:972–7. PubMed

van Velzen  HG, Schinkel  AFL, Baart  SJ, Oldenburg  RA, Frohn-Mulder  IME, van Slegtenhorst  MA  et al.  Outcomes of contemporary family screening in hypertrophic cardiomyopathy. Circ Genom Precis Med  2018;11:e001896. PubMed

Norrish  G, Jager  J, Field  E, Quinn  E, Fell  H, Lord  E  et al.  Yield of clinical screening for hypertrophic cardiomyopathy in child first-degree relatives. Circulation  2019;140:184–92. PubMed PMC

Pena  JLB, Santos  WC, Siqueira  MHA, Sampaio  IH, Moura  ICG, Sternick  EB.  Glycogen storage cardiomyopathy (PRKAG2): diagnostic findings of standard and advanced echocardiography techniques. Eur Heart J Cardiovasc Imaging  2021;22:800–7. PubMed

Maron  BJ, Roberts  WC, Arad  M, Haas  TS, Spirito  P, Wright  GB  et al.  Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA  2009;301:1253–9. PubMed PMC

Elliott  P, Baker  R, Pasquale  F, Quarta  G, Ebrahim  H, Mehta  AB  et al. ; ACES study group . Prevalence of Anderson-Fabry disease in patients with hypertrophic cardiomyopathy: the European Anderson-Fabry Disease survey. Heart  2011;97:1957–60. PubMed

Benson  MD, Waddington-Cruz  M, Berk  JL, Polydefkis  M, Dyck  PJ, Wang  AK  et al.  Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med  2018;379:22–31. PubMed

Yavari  A, Bellahcene  M, Bucchi  A, Sirenko  S, Pinter  K, Herring  N  et al.  Mammalian γ2 AMPK regulates intrinsic heart rate. Nat Commun  2017;8:1258. PubMed PMC

Sternick  EB, Oliva  A, Gerken  LM, Magalhães  L, Scarpelli  R, Correia  FS  et al.  Clinical, electrocardiographic, and electrophysiologic characteristics of patients with a fasciculoventricular pathway: the role of PRKAG2 mutation. Heart Rhythm  2011;8:58–64. PubMed

Das  KJ, Ingles  J, Bagnall  RD, Semsarian  C.  Determining pathogenicity of genetic variants in hypertrophic cardiomyopathy: importance of periodic reassessment. Genet Med  2014;16:286–93. PubMed

Ahmad  F, McNally  EM, Ackerman  MJ, Baty  LC, Day  SM, Kullo  IJ  et al.  Establishment of specialized clinical cardiovascular genetics programs: recognizing the need and meeting standards: a scientific statement from the American Heart Association. Circ Genom Precis Med  2019;12:e000054. PubMed

Ranthe  MF, Carstensen  L, Øyen  N, Jensen  MK, Axelsson  A, Wohlfahrt  J  et al.  Risk of cardiomyopathy in younger persons with a family history of death from cardiomyopathy: a nationwide family study in a cohort of 3.9 million persons. Circulation  2015;132:1013–9. PubMed

Bagnall  RD, Ingles  J, Dinger  ME, Cowley  MJ, Ross  SB, Minoche  AE  et al.  Whole genome sequencing improves outcomes of genetic testing in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol  2018;72:419–29. PubMed

Ho  CY, Day  SM, Ashley  EA, Michels  M, Pereira  AC, Jacoby  D  et al. ; For the SHaRe Investigators . Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation  2018;138:1387–98. PubMed PMC

Thomson  KL, Ormondroyd  E, Harper  AR, Dent  T, McGuire  K, Baksi  J  et al. ; NIHR BioResource – Rare Diseases Consortium . Analysis of 51 proposed hypertrophic cardiomyopathy genes from genome sequencing data in sarcomere negative cases has negligible diagnostic yield. Genet Med  2019;21:1576–84. PubMed PMC

Valdés-Mas  R, Gutiérrez-Fernández  A, Gómez  J, Coto  E, Astudillo  A, Puente  DA  et al.  Mutations in filamin C cause a new form of familial hypertrophic cardiomyopathy. Nat Commun  2014;5:5326. PubMed

Ingles  J, Burns  C, Bagnall  RD, Lam  L, Yeates  L, Sarina  T  et al.  Nonfamilial hypertrophic cardiomyopathy: prevalence, natural history, and clinical implications. Circ Cardiovasc Genet  2017;10:e001620. PubMed

van Capelle  CI, Poelman  E, Frohn-Mulder  IM, Koopman  LP, van den Hout  JMP, Régal  L  et al.  Cardiac outcome in classic infantile Pompe disease after 13 years of treatment with recombinant human acid alpha-glucosidase. Int J Cardiol  2018;269:104–10. PubMed

Landstrom  AP, Adekola  BA, Bos  JM, Ommen  SR, Ackerman  MJ.  PLN-encoded phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases: summary of the literature and implications for genetic testing. Am Heart J  2011;161:165–71. PubMed PMC

Kouz  K, Lissewski  C, Spranger  S, Mitter  D, Riess  A, Lopez-Gonzalez  V  et al.  Genotype and phenotype in patients with Noonan syndrome and a RIT1 mutation. Genet Med  2016;18:1226–34. PubMed

Mathew  J, Zahavich  L, Lafreniere-Roula  M, Wilson  J, George  K, Benson  L  et al.  Utility of genetics for risk stratification in pediatric hypertrophic cardiomyopathy. Clin Genet  2018;93:310–9. PubMed

Ingles  J, Doolan  A, Chiu  C, Seidman  J, Seidman  C, Semsarian  C.  Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet  2005;42:e59. PubMed PMC

Miron  A, Lafreniere-Roula  MS, Fan  CP, Armstrong  KR, Dragulescu  A, Papaz  T  et al.  A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation  2020;142:217–29. PubMed PMC

Christiaans  I, Birnie  E, Bonsel  GJ, Mannens  MM, Michels  M, Majoor-Krakauer  D  et al.  Manifest disease, risk factors for sudden cardiac death, and cardiac events in a large nationwide cohort of predictively tested hypertrophic cardiomyopathy mutation carriers: determining the best cardiological screening strategy. Eur Heart J  2011;32:1161–70. PubMed

Haas  J, Frese  KS, Peil  B, Kloos  W, Keller  A, Nietsch  R  et al.  Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J  2015;36:1123–35a. PubMed

Ware  JS, Amor-Salamanca  A, Tayal  U, Govind  R, Serrano  I, Salazar-Mendiguchía  J  et al.  Genetic etiology for alcohol-induced cardiac toxicity. J Am Coll Cardiol  2018;71:2293–302. PubMed PMC

Ware  JS, Li  J, Mazaika  E, Yasso  CM, Desouza  T, Cappola  TP  et al. ; IMAC-2 and IPAC Investigators . Shared genetic predisposition in peripartum and dilated cardiomyopathies. N Engl J Med  2016;374:233–41. PubMed PMC

Thuillot  M, Maupain  C, Gandjbakhch  E, Waintraub  X, Hidden-Lucet  F, Isnard  R  et al.  External validation of risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers. Eur J Heart Fail  2019;21:253–4. PubMed

Peters  S, Kumar  S, Elliott  P, Kalman  JM, Fatkin  D.  Arrhythmic genotypes in familial dilated cardiomyopathy: implications for genetic testing and clinical management. Heart Lung Circ  2019;28:31–8. PubMed

Kayvanpour  E, Sedaghat-Hamedani  F, Amr  A, Lai  A, Haas  J, Holzer  DB  et al.  Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol  2017;106:127–39. PubMed

Ortiz-Genga  MF, Cuenca  S, Dal Ferro  M, Zorio  E, Salgado-Aranda  R, Climent  V  et al.  Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J Am Coll Cardiol  2016;68:2440–51. PubMed

Ader  F, De Groote  P, Réant  P, Rooryck-Thambo  C, Dupin-Deguine  D, Rambaud  C  et al.  FLNC pathogenic variants in patients with cardiomyopathies: prevalence and genotype-phenotype correlations. Clin Genet  2019;96:317–29. PubMed

Wahbi  K, Béhin  A, Charron  P, Dunand  M, Richard  P, Meune  C  et al.  High cardiovascular morbidity and mortality in myofibrillar myopathies due to DES gene mutations: a 10-year longitudinal study. Neuromuscul Disord  2012;22:211–8. PubMed

Heliö  T, Elliott  P, Koskenvuo  JW, Gimeno  JR, Tavazzi  L, Tendera  M  et al. ; EORP Cardiomyopathy Registry Investigators Group . ESC EORP Cardiomyopathy Registry: real-life practice of genetic counselling and testing in adult cardiomyopathy patients. ESC Heart Fail  2020;7:3013–21. PubMed PMC

European Society of Human Genetics . Genetic testing in asymptomatic minors: recommendations of the European Society of Human Genetics. Eur J Hum Genet  2009;17:720–1. PubMed PMC

Elliott  P, Andersson  B, Arbustini  E, Bilinska  Z, Cecchi  F, Charron  P  et al.  Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J  2008;29:270–6. PubMed

Keren  A, Gottlieb  S, Tzivoni  D, Stern  S, Yarom  R, Billingham  ME  et al.  Mildly dilated congestive cardiomyopathy. Use of prospective diagnostic criteria and description of the clinical course without heart transplantation. Circulation  1990;81:506–17. PubMed

Grunig  E, Tasman  JA, Kucherer  H, Franz  W, Kubler  W, Katus  HA.  Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol  1998;31:186–94. PubMed

Mahon  NG, Murphy  RT, MacRae  CA, Caforio  AL, Elliott  PM, McKenna  WJ.  Echocardiographic evaluation in asymptomatic relatives of patients with dilated cardiomyopathy reveals preclinical disease. Ann Intern Med  2005;143:108–15. PubMed

Michels  VV, Moll  PP, Miller  FA, Tajik  AJ, Chu  JS, Driscoll  DJ  et al.  The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med  1992;326:77–82. PubMed

Asselbergs  FW, Sammani  A, Elliott  P, Gimeno  JR, Tavazzi  L, Tendera  M  et al. ; Cardiomyopathy & Myocarditis Registry Investigators Group . Differences between familial and sporadic dilated cardiomyopathy: ESC EORP Cardiomyopathy & Myocarditis registry. ESC Heart Fail  2021;8:95–105. PubMed PMC

Garcia-Pavia  P, Kim  Y, Restrepo-Cordoba  MA, Lunde  IG, Wakimoto  H, Smith  AM  et al.  Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation  2019;140:31–41. PubMed PMC

Kontorovich  AR, Patel  N, Moscati  A, Richter  F, Peter  I, Purevjav  E  et al.  Myopathic cardiac genotypes increase risk for myocarditis. JACC Basic Transl Sci  2021;6:584–92. PubMed PMC

Mazzarotto  F, Tayal  U, Buchan  RJ, Midwinter  W, Wilk  A, Whiffin  N  et al.  Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation  2020;141:387–98. PubMed PMC

Jordan  E, Hershberger  RE.  Considering complexity in the genetic evaluation of dilated cardiomyopathy. Heart  2021;107:106–12. PubMed PMC

Garnier  S, Harakalova  M, Weiss  S, Mokry  M, Regitz-Zagrosek  V, Hengstenberg  C  et al.  Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23. Eur Heart J  2021;42:2000–11. PubMed PMC

Mogensen  J, van Tintelen  JP, Fokstuen  S, Elliott  P, van Langen  IM, Meder  B  et al.  The current role of next-generation DNA sequencing in routine care of patients with hereditary cardiovascular conditions: a viewpoint paper of the European Society of Cardiology working group on myocardial and pericardial diseases and members of the European Society of Human Genetics. Eur Heart J  2015;36:1367–70. PubMed

Peters  S, Johnson  R, Birch  S, Zentner  D, Hershberger  RE, Fatkin  D.  Familial dilated cardiomyopathy. Heart Lung Circ  2020;29:566–74. PubMed

Pinto  YM, Elliott  PM, Arbustini  E, Adler  Y, Anastasakis  A, Böhm  M  et al.  Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J  2016;37:1850–8. PubMed

Hasselberg  NE, Haland  TF, Saberniak  J, Brekke  PH, Berge  KE, Leren  TP  et al.  Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation. Eur Heart J  2018;39:853–60. PubMed PMC

Kuliev  A, Pomerantseva  E, Polling  D, Verlinsky  O, Rechitsky  S.  PGD for inherited cardiac diseases. Reprod Biomed Online  2012;24:443–53. PubMed

Hoorntje  ET, Bollen  IA, Barge-Schaapveld  DQ, van Tienen  FH, Te Meerman  GJ, Jansweijer  JA  et al.  Lamin A/C-related cardiac disease: late onset with a variable and mild phenotype in a large cohort of patients with the lamin A/C p.(Arg331Gln) founder mutation. Circ Cardiovasc Genet  2017;10:e001631. PubMed

Verdonschot  JAJ, Hazebroek  MR, Derks  KWJ, Barandiarán Aizpurua  A, Merken  JJ, Wang  P  et al.  Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and long-term life-threatening arrhythmias. Eur Heart J  2018;39:864–73. PubMed

Gigli  M, Merlo  M, Graw  SL, Barbati  G, Rowland  TJ, Slavov  DB  et al.  Genetic risk of arrhythmic phenotypes in patients with dilated cardiomyopathy. J Am Coll Cardiol  2019;74:1480–90. PubMed PMC

Towbin  JA, McKenna  WJ, Abrams  DJ, Ackerman  MJ, Calkins  H, Darrieux  FCC  et al.  2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm  2019;16:e301–72. PubMed

Van Lint  FHM, Murray  B, Tichnell  C, Zwart  R, Amat  N, Lekanne Deprez  RH  et al.  Arrhythmogenic right ventricular cardiomyopathy-associated desmosomal variants are rarely de novo. Circ Genom Precis Med  2019;12:e002467. PubMed

Corrado  D, Perazzolo Marra  M, Zorzi  A, Beffagna  G, Cipriani  A, Lazzari  MD  et al.  Diagnosis of arrhythmogenic cardiomyopathy: the Padua criteria. Int J Cardiol  2020;319:106–14. PubMed

Ackerman  MJ, Priori  SG, Willems  S, Berul  C, Brugada  R, Calkins  H  et al.  HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm  2011;8:1308–39. PubMed

Walsh  R, Thomson  KL, Ware  JS, Funke  BH, Woodley  J, McGuire  KJ  et al.  Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med  2017;19:192–203. PubMed PMC

Corrado  D, van Tintelen  PJ, McKenna  WJ, Hauer  RNW, Anastastakis  A, Asimaki  A  et al. ; International Experts . Arrhythmogenic right ventricular cardiomyopathy: evaluation of the current diagnostic criteria and differential diagnosis. Eur Heart J  2020;41:1414–29. PubMed PMC

Fressart  V, Duthoit  G, Donal  E, Probst  V, Deharo  JC, Chevalier  P  et al.  Desmosomal gene analysis in arrhythmogenic right ventricular dysplasia/cardiomyopathy: spectrum of mutations and clinical impact in practice. Europace  2010;12:861–8. PubMed

van der Zwaag  PA, van Rijsingen  IA, Asimaki  A, Jongbloed  JD, van Veldhuisen  DJ, Wiesfeld  AC  et al.  Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur J Heart Fail  2012;14:1199–207. PubMed PMC

Hodgkinson  KA, Connors  SP, Merner  N, Haywood  A, Young  TL, McKenna  WJ  et al.  The natural history of a genetic subtype of arrhythmogenic right ventricular cardiomyopathy caused by a p.S358L mutation in TMEM43. Clin Genet  2013;83:321–31. PubMed

Tiso  N, Stephan  DA, Nava  A, Bagattin  A, Devaney  JM, Stanchi  F  et al.  Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet  2001;10:189–94. PubMed

Protonotarios  A, Brodehl  A, Asimaki  A, Jager  J, Quinn  E, Stanasiuk  C  et al.  The novel desmin variant p.Leu115Ile is associated with a unique form of biventricular Arrhythmogenic Cardiomyopathy. Can J Cardiol  2021;37:857–66. PubMed

Bermúdez-Jiménez  FJ, Carriel  V, Brodehl  A, Alaminos  M, Campos  A, Schirmer  I  et al.  Novel desmin mutation p.Glu401Asp impairs filament formation, disrupts cell membrane integrity, and causes severe arrhythmogenic left ventricular cardiomyopathy/dysplasia. Circulation  2018;137:1595–610. PubMed

Marey  I, Fressart  V, Rambaud  C, Fornes  P, Martin  L, Grotto  S  et al.  Clinical impact of post-mortem genetic testing in cardiac death and cardiomyopathy. Open Med (Wars)  2020;15:435–46. PubMed PMC

Groeneweg  JA, Bhonsale  A, James  CA, Te Riele  AS, Dooijes  D, Tichnell  C  et al.  Clinical presentation, long-term follow-up, and outcomes of 1001 arrhythmogenic right ventricular dysplasia/cardiomyopathy patients and family members. Circ Cardiovasc Genet  2015;8:437–46. PubMed

Quarta  G, Muir  A, Pantazis  A, Syrris  P, Gehmlich  K, Garcia-Pavia  P  et al.  Familial evaluation in arrhythmogenic right ventricular cardiomyopathy: impact of genetics and revised task force criteria. Circulation  2011;123:2701–9. PubMed

James  CA, Syrris  P, van Tintelen  JP, Calkins  H.  The role of genetics in cardiovascular disease: arrhythmogenic cardiomyopathy. Eur Heart J  2020;41:1393–400. PubMed

Ghidoni  A, Elliott  PM, Syrris  P, Calkins  H, James  CA, Judge  DP  et al.  Cadherin 2-related arrhythmogenic cardiomyopathy: prevalence and clinical features. Circ Genom Precis Med  2021;14:e003097. PubMed PMC

Ross  SB, Singer  ES, Driscoll  E, Nowak  N, Yeates  L, Puranik  R  et al.  Genetic architecture of left ventricular noncompaction in adults. Hum Genome Var  2020;7:33. PubMed PMC

Verstraelen  TE, van Lint  FHM, Bosman  LP, de Brouwer  R, Proost  VM, Abeln  BGS  et al.  Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers-reaching the frontiers of individual risk prediction. Eur Heart J  2021;42:2842–50. PubMed PMC

Cadrin-Tourigny  J, Bosman  LP, Wang  W, Tadros  R, Bhonsale  A, Bourfiss  M  et al.  Sudden cardiac death prediction in arrhythmogenic right ventricular cardiomyopathy: a multinational collaboration. Circ Arrhythm Electrophysiol  2021;14:e008509. PubMed PMC

Rigato  I, Bauce  B, Rampazzo  A, Zorzi  A, Pilichou  K, Mazzotti  E  et al.  Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet  2013;6:533–42. PubMed

Bhonsale  A, Groeneweg  JA, James  CA, Dooijes  D, Tichnell  C, Jongbloed  JDH  et al.  Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J  2015;36:847–55. PubMed

James  CA, Bhonsale  A, Tichnell  C, Murray  B, Russell  SD, Tandri  H  et al.  Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol  2013;62:1290–7. PubMed PMC

Sawant  ACT, Riele  ASJM, Tichnell  C, Murray  B, Bhonsale  A, Tandri  H  et al.  Safety of American Heart Association-recommended minimum exercise for desmosomal mutation carriers. Heart Rhythm  2016;13:199–207. PubMed

Van Waning  JI, Caliskan  K, Hoedemaekers  YM, Van Spaendonck-Zwarts  KY, Baas  AF, Boekholdt  SM  et al.  Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J Am Coll Cardiol  2018;71:711–22. PubMed

Liu  S, Bai  Y, Huang  J, Zhao  H, Zhang  X, Hu  S  et al.  Do mitochondria contribute to left ventricular non-compaction cardiomyopathy? New findings from myocardium of patients with left ventricular non-compaction cardiomyopathy. Mol Genet Metab  2013;109:100–6. PubMed

Richard  P, Ader  F, Roux  M, Donal  E, Eicher  JC, Aoutil  N  et al.  Targeted panel sequencing in adult patients with left ventricular non-compaction reveals a large genetic heterogeneity. Clin Genet  2019;95:356–67. PubMed

Vanlerberghe  C, Jourdain  A-S, Ghoumid  J, Frenois  F, Mezel  A, Vaksmann  G  et al.  Holt-Oram syndrome: clinical and molecular description of 78 patients with TBX5 variants. Eur J Hum Genet  2019;27:360–8. PubMed PMC

Maury  P, Gandjbakhch  E, Baruteau  A-E, Bessière  F, Kyndt  F, Bouvagnet  P  et al.  Cardiac phenotype and long-term follow-up of patients with mutations in NKX2-5 gene. J Am Coll Cardiol  2016;68:2389–90. PubMed

Ross  SB, Bagnall  RD, Yeates  L, Sy  RW, Semsarian  C.  Holt-Oram syndrome in two families diagnosed with left ventricular noncompaction and conduction disease. HeartRhythm Case Rep  2018;4:146–51. PubMed PMC

Femia  G, Zhu  D, Choudhary  P, Ross  SB, Muthurangu  V, Richmond  D  et al.  Long term clinical outcomes associated with CMR quantified isolated left ventricular non-compaction in adults. Int J Cardiol  2021;328:235–40. PubMed

Mazzarotto  F, Hawley  MH, Beltrami  M, Beekman  L, de Marvao  A, McGurk  KA  et al.  Systematic large-scale assessment of the genetic architecture of left ventricular noncompaction reveals diverse etiologies. Genet Med  2021;23:856–64. PubMed PMC

Ross  SB, Semsarian  C.  Clinical and genetic complexities of left ventricular noncompaction: preventing overdiagnosis in a disease we do not understand. JAMA Cardiol  2018;3:1033–4. PubMed

Ross  SB, Jones  K, Blanch  B, Puranik  R, McGeechan  K, Barratt  A  et al.  A systematic review and meta-analysis of the prevalence of left ventricular non-compaction in adults. Eur Heart J  2020;41:1428–36. PubMed

Gallego-Delgado  M, Delgado  JF, Brossa-Loidi  V, Palomo  J, Marzoa-Rivas  R, Perez-Villa  F  et al.  Idiopathic restrictive cardiomyopathy is primarily a genetic disease. J Am Coll Cardiol  2016;67:3021–3. PubMed

Kaski  JP, Syrris  P, Burch  M, Tome-Esteban  MT, Fenton  M, Christiansen  M  et al.  Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart  2008;94:1478–84. PubMed

Sen-Chowdhry  S, Syrris  P, McKenna  WJ.  Genetics of restrictive cardiomyopathy. Heart Fail Clin  2010;6:179–86. PubMed

Ton  V-K, Mukherjee  M, Judge  DP.  Transthyretin cardiac amyloidosis: pathogenesis, treatments, and emerging role in heart failure with preserved ejection fraction. Clin Med Insights Cardiol  2014;8(Suppl 1):39–44. PubMed PMC

Buxbaum  JN, Ruberg  FL.  Transthyretin V122I (pV142I)* cardiac amyloidosis: an age-dependent autosomal dominant cardiomyopathy too common to be overlooked as a cause of significant heart disease in elderly African Americans. Genet Med  2017;19:733–42. PubMed PMC

Germain  DP, Charrow  J, Desnick  RJ, Guffon  N, Kempf  J, Lachmann  RH  et al.  Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet  2015;52:353–8. PubMed PMC

Emdin  M, Aimo  A, Rapezzi  C, Fontana  M, Perfetto  F, Seferovic  PM  et al.  Treatment of cardiac transthyretin amyloidosis: an update. Eur Heart J  2019;40:3699–706. PubMed

Maurer  MS, Schwartz  JH, Gundapaneni  B, Elliott  PM, Merlini  G, Waddington-Cruz  M  et al.  Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med  2018;379:1007–16. PubMed

Behr  ER, Casey  A, Sheppard  M, Wright  M, Bowker  TJ, Davies  MJ  et al.  Sudden arrhythmic death syndrome: a national survey of sudden unexplained cardiac death. Heart  2007;93:601–5. PubMed PMC

Lahrouchi  N, Raju  H, Lodder  EM, Papatheodorou  S, Miles  C, Ware  JS  et al.  The yield of postmortem genetic testing in sudden death cases with structural findings at autopsy. Eur J Hum Genet  2020;28:17–22. PubMed PMC

de Noronha  SV, Behr  ER, Papadakis  M, Ohta-Ogo  K, Banya  W, Wells  J  et al.  The importance of specialist cardiac histopathological examination in the investigation of young sudden cardiac deaths. Europace  2014;16:899–907. PubMed

Tester  DJ, Medeiros-Domingo  A, Will  ML, Haglund  CM, Ackerman  MJ.  Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc  2012;87:524–39. PubMed PMC

Bagnall  RD, Weintraub  RG, Ingles  J, Duflou  J, Yeates  L, Lam  L  et al.  A prospective study of sudden cardiac death among children and young adults. N Engl J Med  2016;374:2441–52. PubMed

Lahrouchi  N, Raju  H, Lodder  EM, Papatheodorou  E, Ware  JS, Papadakis  M  et al.  Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome. J Am Coll Cardiol  2017;69:2134–45. PubMed PMC

Isbister  JC, Nowak  N, Butters  A, Yeates  L, Gray  B, Sy  RW  et al.  "Concealed cardiomyopathy" as a cause of previously unexplained sudden cardiac arrest. Int J Cardiol  2021;324:96–101. PubMed

Anderson  JH, Tester  DJ, Will  ML, Ackerman  MJ.  Whole-exome molecular autopsy after exertion-related sudden unexplained death in the young. Circ Cardiovasc Genet  2016;9:259–65. PubMed

Shanks  GW, Tester  DJ, Ackerman  JP, Simpson  MA, Behr  ER, White  SM  et al.  Importance of variant interpretation in whole-exome molecular autopsy: population-based case series. Circulation  2018;137:2705–15. PubMed

Grondin  SD, Davies B Cadrin-Tourigny  J, Steinberg  C, Cheung  CC, Jorda  P  et al.  Importance of genetic testing in unexplained cardiac arrest. Eur Heart J  2022;doi:10.1093/eurheartj/ehac145. PubMed PMC

Zipes  DP, Wellens  HJ.  Sudden cardiac death. Circulation  1998;98:2334–51. PubMed

Survivors of out-of-hospital cardiac arrest with apparently normal heart. Need for definition and standardized clinical evaluation. Consensus Statement of the Joint Steering Committees of the Unexplained Cardiac Arrest Registry of Europe and of the Idiopathic Ventricular Fibrillation Registry of the United States. Circulation  1997;95:265–72. PubMed

Mellor  G, Laksman  ZWM, Tadros  R, Roberts  JD, Gerull  B, Simpson  CS  et al.  Genetic testing in the evaluation of unexplained cardiac arrest: from the CASPER (Cardiac Arrest Survivors With Preserved Ejection Fraction Registry). Circ Cardiovasc Genet  2017;10:e001686. PubMed

Asatryan  B, Schaller  A, Seiler  J, Servatius  H, Noti  F, Baldinger  SH  et al.  Usefulness of genetic testing in sudden cardiac arrest survivors with or without previous clinical evidence of heart disease. Am J Cardiol  2019;123:2031–8. PubMed

Visser  M, Dooijes  D, van der Smagt  JJ, van der Heijden  JF, Doevendans  PA, Loh  P  et al.  Next-generation sequencing of a large gene panel in patients initially diagnosed with idiopathic ventricular fibrillation. Heart Rhythm  2017;14:1035–40. PubMed

Matassini  MV, Krahn  AD, Gardner  M, Champagne  J, Sanatani  S, Birnie  DH  et al.  Evolution of clinical diagnosis in patients presenting with unexplained cardiac arrest or syncope due to polymorphic ventricular tachycardia. Heart Rhythm  2014;11:274–81. PubMed

Alders  M, Koopmann  TT, Christiaans  I, Postema  PG, Beekman  L, Tanck  MW  et al.  Haplotype-sharing analysis implicates chromosome 7q36 harboring DPP6 in familial idiopathic ventricular fibrillation. Am J Hum Genet  2009;84:468–76. PubMed PMC

Fujii  Y, Itoh  H, Ohno  S, Murayama  T, Kurebayashi  N, Aoki  H  et al.  A type 2 ryanodine receptor variant associated with reduced Ca(2+) release and short-coupled torsades de pointes ventricular arrhythmia. Heart Rhythm  2017;14:98–107. PubMed

Li  Y, Wei  J, Guo  W, Sun  B, Estillore  JP, Wang  R  et al.  Human RyR2 (Ryanodine Receptor 2) loss-of-function mutations: clinical phenotypes and in vitro characterization. Circ Arrhythm Electrophysiol  2021;14:e010013. PubMed

Mone  F, Stott  BK, Hamilton  S, Seale  AN, Quinlan-Jones  E, Allen  S  et al.  The diagnostic yield of prenatal genetic technologies in congenital heart disease: a prospective cohort study. Fetal Diagn Ther  2021;1–8. PubMed

Qiao  F, Wang  Y, Zhang  C, Zhou  R, Wu  Y, Wang  C  et al.  Comprehensive evaluation of genetic variants in fetuses with congenital heart defect using chromosomal microarray analysis and exome sequencing. Ultrasound Obstet Gynecol  2021;58:377–87. PubMed

Mone  F, Eberhardt  RY, Morris  RK, Hurles  ME, McMullan  DJ, Maher  ER  et al. ; the CODE Study Collaborators . COngenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study: prospective cohort study and systematic review. Ultrasound Obstet Gynecol  2021;57:43–51. PubMed

Hanchard  NA, Umana  LA, D'Alessandro  L, Azamian  M, Poopola  M, Morris  SA  et al.  Assessment of large copy number variants in patients with apparently isolated congenital left-sided cardiac lesions reveals clinically relevant genomic events. Am J Med Genet A  2017;173:2176–88. PubMed PMC

Hauser  NS, Solomon  BD, Vilboux  T, Khromykh  A, Baveja  R, Bodian  DL.  Experience with genomic sequencing in pediatric patients with congenital cardiac defects in a large community hospital. Mol Genet Genomic Med  2018;6:200–12. PubMed PMC

Brunelli  L, Jenkins  SM, Gudgeon  JM, Bleyl  SB, Miller  CE, Tvrdik  T  et al.  Targeted gene panel sequencing for the rapid diagnosis of acutely ill infants. Mol Genet Genomic Med  2019;7:e00796. PubMed PMC

Thienpont  B, Mertens  L, de Ravel  T, Eyskens  B, Boshoff  D, Maas  N  et al.  Submicroscopic chromosomal imbalances detected by array-CGH are a frequent cause of congenital heart defects in selected patients. Eur Heart J  2007;28:2778–84. PubMed

Jin  SC, Homsy  J, Zaidi  S, Lu  Q, Morton  S, DePalma  SR  et al.  Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet  2017;49:1593–601. PubMed PMC

Homsy  J, Zaidi  S, Shen  Y, Ware  JS, Samocha  KE, Karczewski  KJ  et al.  De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science  2015;350:1262–6. PubMed PMC

Sifrim  A, Hitz  MP, Wilsdon  A, Breckpot  J, Turki  SH, Thienpont  B  et al. ; Deciphering Developmental Disorders Study . Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet  2016;48:1060–5. PubMed PMC

Alankarage  D, Ip  E, Szot  JO, Munro  J, Blue  GM, Harrison  K  et al.  Identification of clinically actionable variants from genome sequencing of families with congenital heart disease. Genet Med  2019;21:1111–20. PubMed

Jia  Y, Louw  JJ, Breckpot  J, Callewaert  B, Barrea  C, Sznajer  Y  et al.  The diagnostic value of next generation sequencing in familial nonsyndromic congenital heart defects. Am J Med Genet A  2015;167a:1822–9. PubMed

Blue  GM, Kirk  EP, Giannoulatou  E, Dunwoodie  SL, Ho  JW, Hilton  DC  et al.  Targeted next-generation sequencing identifies pathogenic variants in familial congenital heart disease. J Am Coll Cardiol  2014;64:2498–506. PubMed

LaHaye  S, Corsmeier  D, Basu  M, Bowman  JL, Fitzgerald-Butt  S, Zender  G  et al.  Utilization of whole exome sequencing to identify causative mutations in familial congenital heart disease. Circ Cardiovasc Genet  2016;9:320–9. PubMed PMC

Breckpot  J, Thienpont  B, Arens  Y, Tranchevent  LC, Vermeesch  JR, Moreau  Y  et al.  Challenges of interpreting copy number variation in syndromic and non-syndromic congenital heart defects. Cytogenet Genome Res  2011;135:251–9. PubMed

Liu  H, Giguet-Valard  AG, Simonet  T, Szenker-Ravi  E, Lambert  L, Vincent-Delorme  C  et al.  Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy. Hum Mutat  2020;41:2167–78. PubMed

Li  AH, Hanchard  NA, Azamian  M, D’Alessandro  LCA, Coban-Akdemir  Z, Lopez  KN  et al.  Genetic architecture of laterality defects revealed by whole exome sequencing. Eur J Hum Genet  2019;27:563–73. PubMed PMC

Gileles-Hillel  A, Mor-Shaked  H, Shoseyov  D, Reiter  J, Tsabari  R, Hevroni  A  et al.  Whole-exome sequencing accuracy in the diagnosis of primary ciliary dyskinesia. ERJ Open Res  2020;6:00213–2020. PubMed PMC

Boskovski  MT, Homsy  J, Nathan  M, Sleeper  LA, Morton  S, Manheimer  KB  et al.  De novo damaging variants, clinical phenotypes, and post-operative outcomes in congenital heart disease. Circ Genom Precis Med  2020;13:e002836. PubMed PMC

Ellesøe  SG, Johansen  MM, Bjerre  JV, Hjortdal  VE, Brunak  S, Larsen  LA.  Familial atrial septal defect and sudden cardiac death: identification of a novel NKX2-5 mutation and a review of the literature. Congenit Heart Dis  2016;11:283–90. PubMed PMC

Li  QY, Newbury-Ecob  RA, Terrett  JA, Wilson  DI, Curtis  AR, Yi  CH  et al.  Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet  1997;15:21–9. PubMed

Blue  GM, Smith  J, Sholler  GF, Semsarian  C, Winlaw  DS; Australian Genomics Cardiovascular Genetic Disorders Flagship . Current practice of genetic testing and counselling in congenital heart disease: an Australian perspective. Heart Lung Circ  2020;29:1733–6. PubMed

Zhang  TN, Wu  QJ, Liu  YS, Lv  JL, Sun  H, Chang  Q  et al.  Environmental risk factors and congenital heart disease: an umbrella review of 165 systematic reviews and meta-analyses with more than 120 million participants. Front Cardiovasc Med  2021;8:640729. PubMed PMC

Geng  J, Picker  J, Zheng  Z, Zhang  X, Wang  J, Hisama  F  et al.  Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genomics  2014;15:1127. PubMed PMC

Szot  JO, Cuny  H, Blue  GM, Humphreys  DT, Ip  E, Harrison  K  et al.  A screening approach to identify clinically actionable variants causing congenital heart disease in exome data. Circ Genom Precis Med  2018;11:e001978. PubMed

Lander  J, Ware  SM.  Copy number variation in congenital heart defects. Curr Genet Med Rep  2014;2:168–78.

Powis  Z, Thrush  D, Davis  BT, Dolinsky  JS.  Diagnostic exome sequencing in pediatric patients with congenital heart disease. J Am Coll Cardiol  2016;67:991. PubMed

Morrish  AM, Smith  J, Enriquez  A, Sholler  GF, Mervis  J, Dunwoodie  SL  et al.  A new era of genetic testing in congenital heart disease: a review. Trends Cardiovasc Med  2021;doi: 10.1016/j.tcm2021.04.011. PubMed

Richardson  A, Ormond  KE.  Ethical considerations in prenatal testing: genomic testing and medical uncertainty. Semin Fetal Neonatal Med  2018;23:1–61.. PubMed

Iwarsson  E, Jacobsson  B, Dagerhamn  J, Davidson  T, Bernabé  E, Heibert Arnlind  M.  Analysis of cell-free fetal DNA in maternal blood for detection of trisomy 21, 18 and 13 in a general pregnant population and in a high risk population—a systematic review and meta-analysis. Acta Obstet Gynecol Scand  2017;96:7–18. PubMed

Kagan  KO, Sroka  F, Sonek  J, Abele  H, Lüthgens  K, Schmid  M  et al.  First-trimester risk assessment based on ultrasound and cell-free DNA vs combined screening: a randomized controlled trial. Ultrasound Obstet Gynecol  2018;51:437–44. PubMed

Migliorini  S, Saccone  G, Silvestro  F, Massaro  G, Arduino  B, D'Alessandro  P  et al.  First-trimester screening based on cell-free DNA vs combined screening: a randomized clinical trial on women's experience. Prenat Diagn  2020;40:1482–8. PubMed

Russell  MW, Chung  WK, Kaltman  JR, Miller  TA.  Advances in the understanding of the genetic determinants of congenital heart disease and their impact on clinical outcomes. JAHA  2018;7:e006906. PubMed PMC

Zaidi  S, Brueckner  M.  Genetics and genomics of congenital heart disease. Circ Res  2017;120:923–40. PubMed PMC

Hureaux  M, Guterman  S, Hervé  B, Till  M, Jaillard  S, Redon  S  et al.  Chromosomal microarray analysis in fetuses with an isolated congenital heart defect: A retrospective, nationwide, multicenter study in France. Prenat Diagn  2019;39:464–70. PubMed

van Nisselrooij  AEL, Lugthart  MA, Clur  SA, Linskens  IH, Pajkrt  E, Rammeloo  LA  et al.  The prevalence of genetic diagnoses in fetuses with severe congenital heart defects. Genet Med  2020;22:1206–14. PubMed PMC

Landstrom  AP, Kim  JJ, Gelb  BD, Helm  BM, Kannankeril  PJ, Semsarian  C  et al.  Genetic testing for heritable cardiovascular diseases in pediatric patients: a scientific statement from the American Heart Association. Circ Genom Precis Med  2021;14:e000086. PubMed PMC

Goldstein  JL, Brown  MS.  A century of cholesterol and coronaries: from plaques to genes to statins. Cell  2015;161:161–72. PubMed PMC

Kathiresan  S, Melander  O, Anevski  D, Guiducci  C, Burtt  NP, Roos  C  et al.  Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med  2008;358:1240–9. PubMed

Myocardial Infarction Genetics  C, Kathiresan  S, Voight  BF, Purcell  S, Musunuru  K, Ardissino  D  et al.  Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet  2009;41:334–41. PubMed PMC

Jaiswal  S, Natarajan  P, Silver  AJ, Gibson  CJ, Bick  AG, Shvartz  E  et al.  Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med  2017;377:111–21. PubMed PMC

Inouye  M, Abraham  G, Nelson  CP, Wood  AM, Sweeting  MJ, Dudbridge  F  et al. ; UK Biobank CardioMetabolic Consortium CHD Working Group . Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J Am Coll Cardiol  2018;72:1883–93. PubMed PMC

Mosley  JD, Gupta  DK, Tan  J, Yao  J, Wells  QS, Shaffer  CM  et al.  Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease. JAMA  2020;323:627–35. PubMed PMC

Elliott  J, Bodinier  B, Bond  TA, Chadeau-Hyam  M, Evangelou  E, Moons  KGM  et al.  Predictive accuracy of a polygenic risk score-enhanced prediction model vs a clinical risk score for coronary artery disease. JAMA  2020;323:636–45. PubMed PMC

Mega  JL, Stitziel  NO, Smith  JG, Chasman  DI, Caulfield  M, Devlin  JJ  et al.  Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet  2015;385:2264–71. PubMed PMC

Bongianino  R, Priori  SG.  Gene therapy to treat cardiac arrhythmias. Nat Rev Cardiol  2015;12:531–46. PubMed

Matsa  LS, Sagurthi  SR, Ananthapur  V, Nalla  S, Nallari  P.  Endothelin 1 gene as a modifier in dilated cardiomyopathy. Gene  2014;548:256–62. PubMed

Jiang  J, Wakimoto  H, Seidman  JG, Seidman  CE.  Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science  2013;342:111–4. PubMed PMC

Anzalone  AV, Koblan  LW, Liu  DR.  Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol  2020;38:824–44. PubMed

Dotzler  SM, Kim  CSJ, Gendron  WAC, Zhou  W, Ye  D, Bos  JM  et al.  Suppression-replacement KCNQ1 gene therapy for type 1 long QT syndrome. Circulation  2021;143:1411–25. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...