European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
MC_UP_1102/20
Medical Research Council - United Kingdom
R01 HL152201
NHLBI NIH HHS - United States
PubMed
35373836
PubMed Central
PMC9435643
DOI
10.1093/europace/euac030
PII: 6562982
Knihovny.cz E-resources
- MeSH
- Atrial Fibrillation * MeSH
- Genetic Testing MeSH
- Consensus MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Asia MeSH
- Latin America MeSH
Amsterdam UMC Heart Center Department of Experimental Cardiology Amsterdam The Netherlands
Cardiac Arrhythmia Service Massachusetts General Hospital and Harvard Medical School Boston MA USA
Cardiac Wellness Institute Chennai India
Center for Cardiac Arrhythmias of Genetic Origin Istituto Auxologico Italiano IRCCS Milan Italy
Center for Human Genetics University Hospitals Leuven Leuven Belgium
Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares Madrid Spain
Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares Madrid Spain
Centro Nacional de Investigaciones Cardiovasculares Carlos 3 Madrid Spain
Cincinnati Children's Hospital Medical Centre University of Cincinnati Cincinnati OH USA
Department of Bioscience and Genetics National Cerebral and Cardiovascular Center Suita Japan
Department of Cardiology Institute for Clinical and Experimental Medicine Prague Czech Republic
Department of Cardiovascular Medicine Mayo Clinic Rochester MN USA
Department of Cardiovascular Medicine Stanford University Stanford California USA
Department of Electrophysiology Heart Center at University of Leipzig Leipzig Germany
Department of Electrophysiology Heart Center Leipzig at University of Leipzig Leipzig Germany
Department of Medicine and Surgery University of Milano Bicocca Milan Italy
Department of Molecular Medicine University of Pavia Pavia Italy
Division of Cardiology University of British Columbia Vancouver Canada
Heart Center Bad Neustadt Bad Neustadt a d Saale Germany
Hipercol Brasil Program São Paulo Brazil
Institut d'Investigacions Biomèdiques August Pi Sunyer Barcelona Spain
Institute for Genetics of Heart Diseases University Hospital Münster Münster Germany
Instituto Nacional de Cardiología Ignacio Chávez Ciudad de México Mexico
Leipzig Heart Institute Leipzig Heart Digital Leipzig Germany
Member of the Latin American Heart Rhythm Society
Metrohealth Medical Center Case Western Reserve University Cleveland OH USA
Molecular Cardiology Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
National Cerebral and Cardiovascular Center Research Institute Suita Japan
Royal Brompton and Harefield Hospitals Guy's and St Thomas' NHS Foundation Trust London UK
Sydney Childrens Hospital Network University of Sydney Sydney Australia
See more in PubMed
Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H et al. ; European Heart Rhythm Association (EHRA) . HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 2011;13:1077–109. PubMed
Schwartz PJ, Crotti L, George AL Jr. Modifier genes for sudden cardiac death. Eur Heart J 2018;39:3925–31. PubMed PMC
Walsh R, Tadros R, Bezzina CR. When genetic burden reaches threshold. Eur Heart J 2020;41:3849–55. PubMed PMC
Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 2018;50:1219–24. PubMed PMC
Schwartz PJ, Breithardt G, Howard AJ, Julian DG, Rehnqvist Ahlberg N. Task Force Report: the legal implications of medical guidelines—a Task Force of the European Society of Cardiology. Eur Heart J 1999;20:1152–7. PubMed
Stiles MK, Wilde AAM, Abrams DJ, Ackerman MJ, Albert CM, Behr ER et al. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. Heart Rhythm 2021;18:e1–50. PubMed PMC
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias: executive summary. J Arrhythm 2020;36:1–58. PubMed PMC
Musunuru K, Hershberger RE, Day SM, Klinedinst NJ, Landstrom AP, Parikh VN et al. ; American Heart Association Council on Genomic and Precision Medicine; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology . Genetic testing for inherited cardiovascular diseases: a scientific statement from the American Heart Association. Circ Genom Precis Med 2020;13:e000067. PubMed
Fellmann F, van El CG, Charron P, Michaud K, Howard HC, Boers SN et al. ; on behalf of European Society of Human Genetics, European Council of Legal Medicine, European Society of Cardiology working group on myocardial and pericardial diseases, European Reference Network for rare, low prevalence and complex diseases of the heart (ERN GUARD-Heart), Association for European Cardiovascular Pathology. European recommendations integrating genetic testing into multidisciplinary management of sudden cardiac death. Eur J Hum Genet 2019;27:1763–73. PubMed PMC
Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med 2019;12:e002460. PubMed PMC
Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy: executive summary. Heart Rhythm 2019;16:e373–407. PubMed
Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm 2018;15:e190–252. PubMed
Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 2015;36:2793–867. PubMed
Pedersen CT, Kay GN, Kalman J, Borggrefe M, Della-Bella P, Dickfeld T et al. ; EP-Europace,UK . EHRA/HRS/APHRS expert consensus on ventricular arrhythmias. Heart Rhythm 2014;11:e166–96. PubMed
Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 2013;10:1932–63. PubMed
Charron P, Arad M, Arbustini E, Basso C, Bilinska Z, Elliott P et al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2010;31:2715–26. PubMed
Walsh R, Adler A Amin AS, Abiusi E, Care M, Bikker H et al. A multi-centred, evidence-based evaluation of gene validity in sudden arrhythmic death syndromes: CPVT and the short QT syndrome. Eur Heart J 2021;doi:10.1093/eurheartj/ehab687. PubMed PMC
James CA, Jongbloed JDH, Hershberger RE, Morales A, Judge DP, Syrris P et al. International evidence based reappraisal of genes associated with arrhythmogenic right ventricular cardiomyopathy using the clinical genome resource framework. Circ Genom Precis Med 2021;14:e003273. PubMed PMC
Jordan E, Peterson L, Ai T, Asatryan B, Bronicki L, Brown E et al. Evidence-based assessment of genes in dilated cardiomyopathy. Circulation 2021;144:7–19. PubMed PMC
Adler A, Novelli V, Amin AS, Abiusi E, Care M, Nannenberg EA et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation 2020;141:418–28. PubMed PMC
Hosseini SM, Kim R, Udupa S, Costain G, Jobling R, Liston E et al. ; National Institutes of Health Clinical Genome Resource Consortium . Reappraisal of reported genes for sudden arrhythmic death: evidence-based evaluation of gene validity for Brugada syndrome. Circulation 2018;138:1195–205. PubMed PMC
Mont L, Pelliccia A, Sharma S, Biffi A, Borjesson MB, Terradellas J et al. ; Reviewers . Pre-participation cardiovascular evaluation for athletic participants to prevent sudden death: position paper from the EHRA and the EACPR, branches of the ESC. Endorsed by APHRS, HRS, and SOLAECE. Eur J Prev Cardiol 2017;24:41–69. PubMed
Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME et al. A brief history of human disease genetics. Nature 2020;577:179–89. PubMed PMC
Roberts R, Marian AJ, Dandona S, Stewart AF. Genomics in cardiovascular disease. J Am Coll Cardiol 2013;61:2029–37. PubMed PMC
Kim L, Devereux RB, Basson CT. Impact of genetic insights into mendelian disease on cardiovascular clinical practice. Circulation 2011;123:544–50. PubMed
Wordsworth S, Leal J, Blair E, Legood R, Thomson K, Seller A et al. DNA testing for hypertrophic cardiomyopathy: a cost-effectiveness model. Eur Heart J 2010;31:926–35. PubMed
Wilde AA, Behr ER. Genetic testing for inherited cardiac disease. Nat Rev Cardiol 2013;10:571–83. PubMed
Lahrouchi N, Tadros R, Crotti L, Mizusawa Y, Postema PG, Beekman L et al. Transethnic genome-wide association study provides insights in the genetic architecture and heritability of long QT syndrome. Circulation 2020;142:324–38. PubMed PMC
Tadros R, Francis C, Xu X, Vermeer AMC, Harper AR, Huurman R et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat Genet 2021;53:128–34. PubMed PMC
Harper AR, Goel A, Grace C, Thomson KL, Petersen SE, Xu X et al. ; HCMR Investigators . Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet 2021;53:135–42. PubMed PMC
Conrad DF, Keebler JE, DePristo MA, Lindsay SJ, Zhang Y, Casals F et al. ; 1000 Genomes Project . Variation in genome-wide mutation rates within and between human families. Nat Genet 2011;43:712–4. PubMed PMC
Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA et al. ; 1000 Genomes Project Consortium . A map of human genome variation from population-scale sequencing. Nature 2010;467:1061–73. PubMed PMC
Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2001;2:280–91. PubMed
Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007;315:848–53. PubMed PMC
Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 2009;10:451–81. PubMed PMC
Lejeune J, Gautier M, Turpin R. [Study of somatic chromosomes from 9 mongoloid children]. C R Hebd Seances Acad Sci 1959;248:1721–2. PubMed
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977;74:5463–7. PubMed PMC
International Human Genome Sequencing Consortium . Finishing the euchromatic sequence of the human genome. Nature 2004;431:931–45. PubMed
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005;437:376–80. PubMed PMC
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008;456:53–9. PubMed PMC
Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 2009;106:19096–101. PubMed PMC
Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009;461:272–6. PubMed PMC
Zhang F, Lupski JR. Non-coding genetic variants in human disease. Hum Mol Genet 2015;24:R102–10. PubMed PMC
Whiffin N, Karczewski KJ, Zhang X, Chothani S, Smith MJ, Evans DG et al. ; Genome Aggregation Database Consortium . Characterising the loss-of-function impact of 5' untranslated region variants in 15,708 individuals. Nat Commun 2020;11:2523. PubMed PMC
Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat Commun 2019;10:1784. PubMed PMC
Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet 2011;12:363–76. PubMed PMC
Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 2013;10:1003–5. PubMed PMC
LaFramboise T. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 2009;37:4181–93. PubMed PMC
Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 2017;19:249–55. PubMed
Miller DT, Lee K, Chung WK, Gordon AS, Herman GE, Klein TE et al. ; ACMG Secondary Findings Working Group . ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021;23:1381–90. PubMed
Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 2017;101:5–22. PubMed PMC
Pe'er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 2008;32:381–5. PubMed
Sotoodehnia N, Isaacs A, de Bakker PI, Dorr M, Newton-Cheh C, Nolte IM et al. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet 2010;42:1068–76. PubMed PMC
Aung N, Vargas JD, Yang C, Cabrera CP, Warren HR, Fung K et al. Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development. Circulation 2019;140:1318–30. PubMed PMC
Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR et al. ; Million Veteran Program . Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat Genet 2019;51:51–62. PubMed PMC
Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015;47:1121–30. PubMed PMC
Shah S, Henry A, Roselli C, Lin H, Sveinbjornsson G, Fatemifar G et al. ; Regeneron Genetics Center . Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun 2020;11:163. PubMed PMC
Roselli C, Chaffin MD, Weng LC, Aeschbacher S, Ahlberg G, Albert CM et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat Genet 2018;50:1225–33. PubMed PMC
Ashar FN, Mitchell RN, Albert CM, Newton-Cheh C, Brody JA, Muller-Nurasyid M et al. A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J 2018;39:3961–9. PubMed PMC
Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet 2013;45:1044–9. PubMed PMC
Villard E, Perret C, Gary F, Proust C, Dilanian G, Hengstenberg C et al. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J 2011;32:1065–76. PubMed PMC
Lambert SA, Gil L, Jupp S, Ritchie SC, Xu Y, Buniello A et al. The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation. Nat Genet 2021;53:420–5. PubMed PMC
Marston NA, Kamanu FK, Nordio F, Gurmu Y, Roselli C, Sever PS et al. Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER trial. Circulation 2020;141:616–23. PubMed PMC
Damask A, Steg PG, Schwartz GG, Szarek M, Hagstrom E, Badimon L et al. ; On behalf of the Regeneron Genetics Center and the ODYSSEY OUTCOMES Investigators. Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. Circulation 2020;141:624–36. PubMed
Marston NA, Gurmu Y, Melloni GEM, Bonaca M, Gencer B, Sever PS et al. The effect of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) inhibition on the risk of venous thromboembolism. Circulation 2020;141:1600–7. PubMed PMC
Tadros R, Tan HL, El Mathari S, Kors JA, Postema PG, Lahrouchi N et al. ; ESCAPE-NET Investigators . Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores. Eur Heart J 2019;40:3097–107. PubMed PMC
Wijeyeratne YD, Tanck MW, Mizusawa Y, Batchvarov V, Barc J, Crotti L et al. SCN5A mutation type and a genetic risk score associate variably with Brugada syndrome phenotype in SCN5A families. Circ Genom Precis Med 2020;13:e002911. PubMed PMC
Turkowski KL, Dotzler SM, Tester DJ, Giudicessi JR, Bos JM, Speziale AD et al. Corrected QT interval-polygenic risk score and its contribution to type 1, type 2, and type 3 long-QT syndrome in probands and genotype-positive family members. Circ Genom Precis Med 2020;13:e002922. PubMed
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al. ; ACMG Laboratory Quality Assurance Committee . Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405–24. PubMed PMC
Manrai AK, Funke BH, Rehm HL, Olesen MS, Maron BA, Szolovits P et al. Genetic misdiagnoses and the potential for health disparities. N Engl J Med 2016;375:655–65. PubMed PMC
Ackerman MJ, Tester DJ, Jones GS, Will ML, Burrow CR, Curran ME. Ethnic differences in cardiac potassium channel variants: implications for genetic susceptibility to sudden cardiac death and genetic testing for congenital long QT syndrome. Mayo Clin Proc 2003;78:1479–87. PubMed
Ackerman MJ, Splawski I, Makielski JC, Tester DJ, Will ML, Timothy KW et al. Spectrum and prevalence of cardiac sodium channel variants among black, white, Asian, and Hispanic individuals: implications for arrhythmogenic susceptibility and Brugada/long QT syndrome genetic testing. Heart Rhythm 2004;1:600–7. PubMed
Giudicessi JR, Roden DM, Wilde AAM, Ackerman MJ. Classification and reporting of potentially proarrhythmic common genetic variation in long QT syndrome genetic testing. Circulation 2018;137:619–30. PubMed PMC
Giudicessi JR, Wilde AAM, Ackerman MJ. The genetic architecture of long QT syndrome: a critical reappraisal. Trends Cardiovasc Med 2018;28:453–64. PubMed PMC
Ackerman JP, Bartos DC, Kapplinger JD, Tester DJ, Delisle BP, Ackerman MJ. The Promise and Peril of Precision Medicine. Mayo Clin Proc 2016;91:1606–16. PubMed PMC
Kelly MA, Caleshu C, Morales A, Buchan J, Wolf Z, Harrison SM et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen's Inherited Cardiomyopathy Expert Panel. Genet Med 2018;20:351–9. PubMed PMC
Richmond CM, James PA, Pantaleo SJ, Chong B, Lunke S, Tan TY et al. Clinical and laboratory reporting impact of ACMG-AMP and modified ClinGen variant classification frameworks in MYH7-related cardiomyopathy. Genet Med 2021;23:1108–15. PubMed
Bains S, Dotzler SM, Krijger C, Giudicessi JR, Ye D, Bikker H et al. A phenotype-enhanced variant classification framework to decrease the burden of missense variants of uncertain significance in type 1 long QT syndrome. Heart Rhythm 2022;19:435–42. PubMed
Kim YE, Ki CS, Jang MA. Challenges and considerations in sequence variant interpretation for mendelian disorders. Ann Lab Med 2019;39:421–9. PubMed PMC
Gelb BD, Cavé H, Dillon MW, Gripp KW, Lee JA, Mason-Suares H et al. ; ClinGen RASopathy Working Group . ClinGen's RASopathy Expert Panel consensus methods for variant interpretation. Genet Med 2018;20:1334–45. PubMed PMC
Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol 2012;60:705–15. PubMed
Lafreniere-Roula M, Bolkier Y, Zahavich L, Mathew J, George K, Wilson J et al. Family screening for hypertrophic cardiomyopathy: is it time to change practice guidelines? Eur Heart J 2019;40:3672–81. PubMed PMC
Ingles J, Burns C, Funke B. Pathogenicity of hypertrophic cardiomyopathy variants: a path forward together. Circ Cardiovasc Genet 2017;10:e001916. PubMed
Ouellette AC, Mathew J, Manickaraj AK, Manase G, Zahavich L, Wilson J et al. Clinical genetic testing in pediatric cardiomyopathy: is bigger better? Clin Genet 2018;93:33–40. PubMed
Jensen MK, Havndrup O, Christiansen M, Andersen PS, Diness B, Axelsson A et al. Penetrance of hypertrophic cardiomyopathy in children and adolescents: a 12-year follow-up study of clinical screening and predictive genetic testing. Circulation 2013;127:48–54. PubMed
Semsarian C, Ingles J, Wilde AA. Sudden cardiac death in the young: the molecular autopsy and a practical approach to surviving relatives. Eur Heart J 2015;36:1290–6. PubMed
Rueda M, Wagner JL, Phillips TC, Topol SE, Muse ED, Lucas JR et al. Molecular autopsy for sudden death in the young: is data aggregation the key? Front Cardiovasc Med 2017;4:72. PubMed PMC
Torkamani A, Muse ED, Spencer EG, Rueda M, Wagner GN, Lucas JR et al. Molecular autopsy for sudden unexpected death. JAMA 2016;316:1492–4. PubMed PMC
Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004;119:19–31. PubMed
Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 2013;127:1009–17. PubMed PMC
Crotti L, Spazzolini C, Tester DJ, Ghidoni A, Baruteau AE, Beckmann BM et al. Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur Heart J 2019;40:2964–75. PubMed PMC
Altmann HM, Tester DJ, Will ML, Middha S, Evans JM, Eckloff BW et al. Homozygous/compound heterozygous triadin mutations associated with autosomal-recessive long-QT syndrome and pediatric sudden cardiac arrest: elucidation of the Triadin knockout syndrome. Circulation 2015;131:2051–60. PubMed
Clemens DJ, Tester DJ, Giudicessi JR, Bos JM, Rohatgi RK, Abrams DJ et al. International Triadin knockout syndrome registry. Circ Genom Precis Med 2019;12:e002419. PubMed
Itoh H, Crotti L, Aiba T, Spazzolini C, Denjoy I, Fressart V et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J 2016;37:1456–64. PubMed PMC
Shimizu W, Horie M. Phenotypic manifestations of mutations in genes encoding subunits of cardiac potassium channels. Circ Res 2011;109:97–109. PubMed
Crotti L, Odening KE, Sanguinetti MC. Heritable arrhythmias associated with abnormal function of cardiac potassium channels. Cardiovasc Res 2020;116:1542–56. PubMed
Dessertenne F. [Ventricular tachycardia with 2 variable opposing foci]. Arch Mal Coeur Vaiss 1966;59:263–72. PubMed
Viskin S. Long QT syndromes and torsade de pointes. Lancet 1999;354:1625–33. PubMed
Takenaka K, Ai T, Shimizu W, Kobori A, Ninomiya T, Otani H et al. Exercise stress test amplifies genotype-phenotype correlation in the LQT1 and LQT2 forms of the long-QT syndrome. Circulation 2003;107:838–44. PubMed
Sy RW, van der Werf C, Chattha IS, Chockalingam P, Adler A, Healey JS et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation 2011;124:2187–94. PubMed
Schwartz PJ, Crotti L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation 2011;124:2181–4. PubMed
Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G et al. Prevalence of the congenital long-QT syndrome. Circulation 2009;120:1761–7. PubMed PMC
Moss AJ, Schwartz PJ, Crampton RS, Locati E, Carleen E. The long QT syndrome: a prospective international study. Circulation 1985;71:17–21. PubMed
Schwartz PJ. Idiopathic long QT syndrome: progress and questions. Am Heart J 1985;109:399–411. PubMed
Schwartz PJ, Spazzolini C, Crotti L, Bathen J, Amlie JP, Timothy K et al. The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation 2006;113:783–90. PubMed
Roberts JD, Asaki SY, Mazzanti A, Bos JM, Tuleta I, Muir AR et al. An international multicenter evaluation of type 5 long QT syndrome: a low penetrant primary arrhythmic condition. Circulation 2020;141:429–39. PubMed PMC
Mazzanti A, Guz D, Trancuccio A, Pagan E, Kukavica D, Chargeishvili T et al. Natural history and risk stratification in Andersen-Tawil syndrome type 1. J Am Coll Cardiol 2020;75:1772–84. PubMed
Wang DW, Crotti L, Shimizu W, Pedrazzini M, Cantu FD, Filippo P et al. Malignant perinatal variant of long-QT syndrome caused by a profoundly dysfunctional cardiac sodium channel. Circ Arrhythm Electrophysiol 2008;1:370–8. PubMed PMC
Crotti L, Ghidoni A, Insolia R, Schwartz PJ. The role of the cardiac sodium channel in perinatal early infant mortality. Card Electrophysiol Clin 2014;6:749–59.
Makita N, Behr E, Shimizu W, Horie M, Sunami A, Crotti L et al. The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest 2008;118:2219–29. PubMed PMC
Rocchetti M, Sala L, Dreizehnter L, Crotti L, Sinnecker D, Mura M et al. Elucidating arrhythmogenic mechanisms of long-QT syndrome CALM1-F142L mutation in patient-specific induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res 2017;113:531–41. PubMed
Schwartz PJ, Ackerman MJ, Antzelevitch C, Bezzina CR, Borggrefe M, Cuneo BF et al. Inherited cardiac arrhythmias. Nat Rev Dis Primers 2020;6:58. PubMed PMC
Dagradi F, Spazzolini C, Castelletti S, Pedrazzini M, Kotta MC, Crotti L et al. Exercise training-induced repolarization abnormalities masquerading as congenital long QT syndrome. Circulation 2020;142:2405–15. PubMed
Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation 1999;99:529–33. PubMed
Shimizu W, Noda T, Takaki H, Kurita T, Nagaya N, Satomi K et al. Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. J Am Coll Cardiol 2003;41:633–42. PubMed
Goldenberg I, Horr S, Moss AJ, Lopes CM, Barsheshet A, McNitt S et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol 2011;57:51–9. PubMed PMC
Mazzanti A, Maragna R, Vacanti G, Monteforte N, Bloise R, Marino M et al. Interplay between genetic substrate, QTc duration, and arrhythmia risk in patients with long QT syndrome. J Am Coll Cardiol 2018;71:1663–71. PubMed
Shimizu W, Moss AJ, Wilde AA, Towbin JA, Ackerman MJ, January CT et al. Genotype-phenotype aspects of type 2 long QT syndrome. J Am Coll Cardiol 2009;54:2052–62. PubMed PMC
Schwartz PJ, Moreno C, Kotta MC, Pedrazzini M, Crotti L, Dagradi F et al. Mutation location and IKs regulation in the arrhythmic risk of long QT syndrome type 1: the importance of the KCNQ1 S6 region. Eur Heart J 2021;42:4743–55. PubMed PMC
Moss AJ, Shimizu W, Wilde AA, Towbin JA, Zareba W, Robinson JL et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation 2007;115:2481–9. PubMed PMC
Crotti L, Spazzolini C, Schwartz PJ, Shimizu W, Denjoy I, Schulze-Bahr E et al. The common long-QT syndrome mutation KCNQ1/A341V causes unusually severe clinical manifestations in patients with different ethnic backgrounds: toward a mutation-specific risk stratification. Circulation 2007;116:2366–75. PubMed
Wilde AA, Moss AJ, Kaufman ES, Shimizu W, Peterson DR, Benhorin J et al. Clinical aspects of type 3 long-QT syndrome: an International Multicenter Study. Circulation 2016;134:872–82. PubMed PMC
Lee YK, Sala L, Mura M, Rocchetti M, Pedrazzini M, Ran X et al. MTMR4 SNVs modulate ion channel degradation and clinical severity in congenital long QT syndrome: insights in the mechanism of action of protective modifier genes. Cardiovasc Res 2021;117:767–79. PubMed PMC
Vincent GM, Schwartz PJ, Denjoy I, Swan H, Bithell C, Spazzolini C et al. High efficacy of beta-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of beta-blocker treatment “failures”. Circulation 2009;119:215–21. PubMed
Barsheshet A, Goldenberg I, O-Uchi J, Moss AJ, Jons C, Shimizu W et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to beta-blocker therapy in type 1 long-QT syndrome. Circulation 2012;125:1988–96. PubMed PMC
Schwartz PJ, Priori SG, Cerrone M, Spazzolini C, Odero A, Napolitano C et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation 2004;109:1826–33. PubMed
Dusi V, Pugliese L, De Ferrari GM, Odero A, Crotti L, Dagradi F et al. Left cardiac sympathetic denervation for long QT syndrome: 50 years’ experience provides guidance for management. JACC Clin Electrophysiol 2021;10.1016/j.jacep.2021.09.002. PubMed DOI
Etheridge SP, Compton SJ, Tristani-Firouzi M, Mason JW. A new oral therapy for long QT syndrome: long-term oral potassium improves repolarization in patients with HERG mutations. J Am Coll Cardiol 2003;42:1777–82. PubMed
Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 2001;103:89–95. PubMed
Wilde AA, Jongbloed RJ, Doevendans PA, Düren DR, Hauer RN, van Langen IM et al. Auditory stimuli as a trigger for arrhythmic events differentiate HERG-related (LQTS2) patients from KVLQT1-related patients (LQTS1). J Am Coll Cardiol 1999;33:327–32. PubMed
Khositseth A, Tester DJ, Will ML, Bell CM, Ackerman MJ. Identification of a common genetic substrate underlying postpartum cardiac events in congenital long QT syndrome. Heart Rhythm 2004;1:60–4. PubMed
Schwartz PJ, Priori SG, Locati EH, Napolitano C, Cantu F, Towbin JA et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 1995;92:3381–6. PubMed
Mazzanti A, Maragna R, Faragli A, Monteforte N, Bloise R, Memmi M et al. Gene-specific therapy with mexiletine reduces arrhythmic events in patients with long QT syndrome type 3. J Am Coll Cardiol 2016;67:1053–8. PubMed PMC
Funasako M, Aiba T, Ishibashi K, Nakajima I, Miyamoto K, Inoue Y et al. Pronounced shortening of QT interval with mexiletine infusion test in patients with type 3 congenital long QT syndrome. Circ J 2016;80:340–5. PubMed
Bos JM, Crotti L, Rohatgi RK, Castelletti S, Dagradi F, Schwartz PJ et al. Mexiletine shortens the QT interval in patients with potassium channel-mediated type 2 long QT syndrome. Circ Arrhythm Electrophysiol 2019;12:e007280. PubMed
Mehta A, Ramachandra CJA, Singh P, Chitre A, Lua CH, Mura M et al. Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur Heart J 2018;39:1446–55. PubMed
Schwartz PJ, Gnecchi M, Dagradi F, Castelletti S, Parati G, Spazzolini C et al. From patient-specific induced pluripotent stem cells to clinical translation in long QT syndrome Type 2. Eur Heart J 2019;40:1832–6. PubMed
Schwartz PJ, Woosley RL. Predicting the unpredictable: drug-induced QT prolongation and Torsades de Pointes. J Am Coll Cardiol 2016;67:1639–50. PubMed
Kääb S, Crawford DC, Sinner MF, Behr ER, Kannankeril PJ, Wilde AA et al. A large candidate gene survey identifies the KCNE1 D85N polymorphism as a possible modulator of drug-induced torsades de pointes. Circ Cardiovasc Genet 2012;5:91–9. PubMed PMC
Strauss DG, Vicente J, Johannesen L, Blinova K, Mason JW, Weeke P et al. Common genetic variant risk score is associated with drug-induced QT prolongation and Torsade de Pointes risk: a pilot study. Circulation 2017;135:1300–10. PubMed PMC
Lahat H, Pras E, Eldar M. A missense mutation in CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Ann Med 2004;36(Suppl 1):87–91. PubMed
Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet 2012;21:2759–67. PubMed PMC
Devalla HD, Gélinas R, Aburawi EH, Beqqali A, Goyette P, Freund C et al. TECRL, a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT. EMBO Mol Med 2016;8:1390–408. PubMed PMC
Webster G, Aburawi EH, Chaix MA, Chandler S, Foo R, Islam A et al. Life-threatening arrhythmias with autosomal recessive TECRL variants. Europace 2021;23:781–8. PubMed PMC
Medeiros-Domingo A, Bhuiyan ZA, Tester DJ, Hofman N, Bikker H, van Tintelen JP et al. The RYR2-encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis. J Am Coll Cardiol 2009;54:2065–74. PubMed PMC
Laurent G, Saal S, Amarouch MY, Béziau DM, Marsman RF, Faivre L et al. Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J Am Coll Cardiol 2012;60:144–56. PubMed
Swan H, Amarouch MY, Leinonen J, Marjamaa A, Kucera JP, Laitinen-Forsblom PJ et al. Gain-of-function mutation of the SCN5A gene causes exercise-induced polymorphic ventricular arrhythmias. Circ Cardiovasc Genet 2014;7:771–81. PubMed
Tester DJ, Ackerman JP, Giudicessi JR, Ackerman NC, Cerrone M, Delmar M et al. Plakophilin-2 truncation variants in patients clinically diagnosed with catecholaminergic polymorphic ventricular tachycardia and decedents with exercise-associated autopsy negative sudden unexplained death in the young. JACC Clin Electrophysiol 2019;5:120–7. PubMed PMC
Hayashi M, Denjoy I, Extramiana F, Maltret A, Buisson NR, Lupoglazoff J-M et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation 2009;119:2426–34. PubMed
van der Werf C, Nederend I, Hofman N, van Geloven N, Ebink C, Frohn-Mulder IM et al. Familial evaluation in catecholaminergic polymorphic ventricular tachycardia: disease penetrance and expression in cardiac ryanodine receptor mutation-carrying relatives. Circ Arrhythm Electrophysiol 2012;5:748–56. PubMed
Giudicessi JR, Lieve KVV, Rohatgi RK, Koca F, Tester DJ, van der Werf C et al. Assessment and validation of a phenotype-enhanced variant classification framework to promote or demote RYR2 missense variants of uncertain significance. Circ Genom Precis Med 2019;12:e002510. PubMed
Coumel P. Catecholaminergic-induced severe ventricular arrhythmias with Adams-Stokes syndrome in children: report of four cases. Br Heart J 1978;40:28–37.
Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation 1995;91:1512–9. PubMed
Tester DJ, Spoon DB, Valdivia HH, Makielski JC, Ackerman MJ. Targeted mutational analysis of the RyR2-encoded cardiac ryanodine receptor in sudden unexplained death: a molecular autopsy of 49 medical examiner/coroner's cases. Mayo Clin Proc 2004;79:1380–4. PubMed
Krahn AD, Healey JS, Simpson CS, Chauhan VS, Birnie DH, Champagne J et al. Sentinel symptoms in patients with unexplained cardiac arrest: from the cardiac arrest survivors with preserved ejection fraction registry (CASPER). J Cardiovasc Electrophysiol 2012;23:60–6. PubMed
Rucinski C, Winbo A, Marcondes L, Earle N, Stiles M, Stiles R et al. A population-based registry of patients with inherited cardiac conditions and resuscitated cardiac arrest. J Am Coll Cardiol 2020;75:2698–707. PubMed
Leinonen JT, Crotti L, Djupsjöbacka A, Castelletti S, Junna N, Ghidoni A et al. The genetics underlying idiopathic ventricular fibrillation: a special role for catecholaminergic polymorphic ventricular tachycardia? Int J Cardiol 2018;250:139–45. PubMed
Tester DJ, Dura M, Carturan E, Reiken S, Wronska A, Marks AR et al. A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm 2007;4:733–9. PubMed PMC
Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001;103:196–200. PubMed
Laitinen PJ, Brown KM, Piippo K, Swan H, Devaney JM, Brahmbhatt B et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 2001;103:485–90. PubMed
Sun B, Yao J, Ni M, Wei J, Zhong X, Guo W et al. Cardiac ryanodine receptor calcium release deficiency syndrome. Sci Transl Med 2021;13:eaba7287. PubMed
Roston TM, Wei J, Guo W, Li Y, Zhong X, Wang R et al. Clinical and functional characterization of ryanodine receptor 2 variants implicated in calcium-release deficiency syndrome. JAMA Cardiol 2022;7:84–92. PubMed PMC
Tester DJ, Arya P, Will M, Haglund CM, Farley AL, Makielski JC et al. Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing. Heart Rhythm 2006;3:800–5. PubMed
Kapplinger JD, Pundi KN, Larson NB, Callis TE, Tester DJ, Bikker H et al. Yield of the RYR2 genetic test in suspected catecholaminergic polymorphic ventricular tachycardia and implications for test interpretation. Circ Genom Precis Med 2018;11:e001424. PubMed PMC
Gray B, Bagnall RD, Lam L, Ingles J, Turner C, Haan E et al. A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2016;13:1652–60. PubMed PMC
Ng K, Titus EW, Lieve KV, Roston TM, Mazzanti A, Deiter FH et al. An international multicenter evaluation of inheritance patterns, arrhythmic risks, and underlying mechanisms of CASQ2-catecholaminergic polymorphic ventricular tachycardia. Circulation 2020;142:932–47. PubMed PMC
van der Werf C, Zwinderman AH, Wilde AA. Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace 2012;14:175–83. PubMed
Kannankeril PJ, Moore JP, Cerrone M, Priori SG, Kertesz NJ, Ro PS et al. Efficacy of flecainide in the treatment of catecholaminergic polymorphic ventricular tachycardia: a randomized clinical trial. JAMA Cardiol 2017;2:759–66. PubMed PMC
De Ferrari GM, Dusi V, Spazzolini C, Bos JM, Abrams DJ, Berul CI et al. Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation 2015;131:2185–93. PubMed
van der Werf C, Lieve KV, Bos JM, Lane CM, Denjoy I, Roses-Noguer F et al. Implantable cardioverter-defibrillators in previously undiagnosed patients with catecholaminergic polymorphic ventricular tachycardia resuscitated from sudden cardiac arrest. Eur Heart J 2019;40:2953–61. PubMed
Yang Y, Hu D, Sacher F, Kusano KF, Li X, Barajas-Martinez H et al. Meta-analysis of risk stratification of SCN5A with Brugada syndrome: is SCN5A always a marker of low risk? Front Physiol 2019;10:103. PubMed PMC
Walsh R, Lahrouchi N, Tadros R, Kyndt F, Glinge C, Postema PG et al. Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genet Med 2021;23:47–58. PubMed PMC
Postema PG. About Brugada syndrome and its prevalence. Europace 2012;14:925–8. PubMed
Milman A, Andorin A, Gourraud JB, Postema PG, Sacher F, Mabo P et al. Profile of patients with Brugada syndrome presenting with their first documented arrhythmic event: data from the Survey on Arrhythmic Events in BRUgada Syndrome (SABRUS). Heart Rhythm 2018;15:716–24. PubMed
Kim YG, Oh SK, Choi HY, Choi JI. Inherited arrhythmia syndrome predisposing to sudden cardiac death. Korean J Intern Med 2021;36:527–38. PubMed PMC
Papadakis M, Papatheodorou E, Mellor G, Raju H, Bastiaenen R, Wijeyeratne Y et al. The diagnostic yield of Brugada syndrome after sudden death with normal autopsy. J Am Coll Cardiol 2018;71:1204–14. PubMed
Tadros R, Nannenberg EA, Lieve KV, Skoric-Milosavljevic D, Lahrouchi N, Lekanne Deprez RH et al. Yield and pitfalls of ajmaline testing in the evaluation of unexplained cardiac arrest and sudden unexplained death: single-center experience with 482 families. JACC Clin Electrophysiol 2017;3:1400–8. PubMed
Shimizu W, Matsuo K, Takagi M, Tanabe Y, Aiba T, Taguchi A et al. Body surface distribution and response to drugs of ST segment elevation in Brugada syndrome: clinical implication of eighty-seven-lead body surface potential mapping and its application to twelve-lead electrocardiograms. J Cardiovasc Electrophysiol 2000;11:396–404. PubMed
Viskin S, Rosso R, Friedensohn L, Havakuk O, Wilde AA. Everybody has Brugada syndrome until proven otherwise? Heart Rhythm 2015;12:1595–8. PubMed
Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J et al. J-Wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge. Europace 2017;19:665–94. PubMed PMC
Baranchuk A, Nguyen T, Ryu MH, Femenia F, Zareba W, Wilde AA et al. Brugada phenocopy: new terminology and proposed classification. Ann Noninvasive Electrocardiol 2012;17:299–314. PubMed PMC
Probst V, Veltmann C, Eckardt L, Meregalli PG, Gaita F, Tan HL et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry. Circulation 2010;121:635–43. PubMed
Lahrouchi N, Talajic M, Tadros R. Risk of arrhythmic events in drug-induced Brugada syndrome. Heart Rhythm 2017;14:1434–5. PubMed
Postema PG, Wolpert C, Amin AS, Probst V, Borggrefe M, Roden DM et al. Drugs and Brugada syndrome patients: review of the literature, recommendations, and an up-to-date website (www.brugadadrugs.org). Heart Rhythm 2009;6:1335–41. PubMed PMC
Probst V, Wilde AA, Barc J, Sacher F, Babuty D, Mabo P et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ Cardiovasc Genet 2009;2:552–7. PubMed
Peltenburg PJ, Blom NA, Vink AS, Kammeraad JAE, Breur H, Rammeloo LAJ et al. In children and adolescents from Brugada syndrome-families, only SCN5A mutation carriers develop a type-1 ECG pattern induced by fever. Circulation 2020;142:89–91. PubMed
Bezzina C, Veldkamp MW, van Den Berg MP, Postma AV, Rook MB, Viersma JW et al. A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res 1999;85:1206–13. PubMed
Sacilotto L, Scanavacca MI, Olivetti N, Lemes C, Pessente GD, Wulkan F et al. Low rate of life-threatening events and limitations in predicting invasive and noninvasive markers of symptoms in a cohort of type 1 Brugada syndrome patients: data and insights from the GenBra registry. J Cardiovasc Electrophysiol 2020;31:2920–8. PubMed
Yamagata K, Horie M, Aiba T, Ogawa S, Aizawa Y, Ohe T et al. Genotype-phenotype correlation of SCN5A mutation for the clinical and electrocardiographic characteristics of probands with brugada syndrome: a Japanese Multicenter Registry. Circulation 2017;135:2255–70. PubMed
Ciconte G, Monasky MM, Santinelli V, Micaglio E, Vicedomini G, Anastasia L et al. Brugada syndrome genetics is associated with phenotype severity. Eur Heart J 2021;42:1082–90. PubMed PMC
Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR et al. 2018 ACC/AHA/HRS Guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, and the Heart Rhythm Society. Circulation 2019;140:e333–81. PubMed
Surawicz B, Childers R, Deal BJ, Gettes LS, Bailey JJ, Gorgels A et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part III: intraventricular conduction disturbances: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol 2009;53:976–81. PubMed
Asatryan B, Medeiros-Domingo A. Molecular and genetic insights into progressive cardiac conduction disease. Europace 2019;21:1145–58. PubMed
Neu A, Eiselt M, Paul M, Sauter K, Stallmeyer B, Isbrandt D et al. A homozygous SCN5A mutation in a severe, recessive type of cardiac conduction disease. Hum Mutat 2010;31:E1609–21. PubMed
Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest 2003;112:1019–28. PubMed PMC
Kyndt F, Probst V, Potet F, Demolombe S, Chevallier JC, Baro I et al. Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation 2001;104:3081–6. PubMed
Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 1999;341:1715–24. PubMed
Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014;11:1305–23. PubMed
Akhtar M, Elliott PM. Risk stratification for sudden cardiac death in non-ischaemic dilated cardiomyopathy. Curr Cardiol Rep 2019;21:155. PubMed PMC
Wahbi K, Ben Yaou R, Gandjbakhch E, Anselme F, Gossios T, Lakdawala NK et al. Development and validation of a new risk prediction score for life-threatening ventricular tachyarrhythmias in laminopathies. Circulation 2019;140:293–302. PubMed
Van Rijsingen IAW, Arbustini E, Elliott PM, Mogensen J, Hermans-Van Ast JF, Van Der Kooi AJ et al. Risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers a European cohort study. J Am Coll Cardiol 2012;59:493–500. PubMed
Nakajima K, Aiba T, Makiyama T, Nishiuchi S, Ohno S, Kato K et al. Clinical manifestations and long-term mortality in lamin A/C mutation carriers from a Japanese Multicenter Registry. Circ J 2018;82:2707–14. PubMed
Tan RB, Gando I, Bu L, Cecchin F, Coetzee W. A homozygous SCN5A mutation associated with atrial standstill and sudden death. Pacing Clin Electrophysiol 2018;41:1036–42. PubMed
Makita N, Sasaki K, Groenewegen WA, Yokota T, Yokoshiki H, Murakami T et al. Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm 2005;2:1128–34. PubMed
Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 2009;119:2737–44. PubMed PMC
Daumy X, Amarouch MY, Lindenbaum P, Bonnaud S, Charpentier E, Bianchi B et al. Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I. Int J Cardiol 2016;207:349–58. PubMed
Kamdar F, Garry DJ. Dystrophin-deficient cardiomyopathy. J Am Coll Cardiol 2016;67:2533–46. PubMed
Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell 1992;69:385. PubMed
Bonne G, Quijano-Roy S. Emery-Dreifuss muscular dystrophy, laminopathies, and other nuclear envelopathies. Handb Clin Neurol 2013;113:1367–76. PubMed
Ishikawa T, Mishima H, Barc J, Takahashi MP, Hirono K, Terada S et al. Cardiac emerinopathy: a nonsyndromic nuclear envelopathy with increased risk of thromboembolic stroke due to progressive atrial standstill and left ventricular noncompaction. Circ Arrhythm Electrophysiol 2020;13:e008712. PubMed
Cenacchi G, Papa V, Pegoraro V, Marozzo R, Fanin M, Angelini C. Review: Danon disease: review of natural history and recent advances. Neuropathol Appl Neurobiol 2020;46:303–22. PubMed
Arbustini E, Di Toro A, Giuliani L, Favalli V, Narula N, Grasso M. Cardiac phenotypes in hereditary muscle disorders: JACC state-of-the-art review. J Am Coll Cardiol 2018;72:2485–506. PubMed
Hu D, Hu D, Liu L, Barr D, Liu Y, Balderrabano-Saucedo N et al. Identification, clinical manifestation and structural mechanisms of mutations in AMPK associated cardiac glycogen storage disease. EBioMedicine 2020;54:102723. PubMed PMC
Theis JL, Zimmermann MT, Larsen BT, Rybakova IN, Long PA, Evans JM et al. TNNI3K mutation in familial syndrome of conduction system disease, atrial tachyarrhythmia and dilated cardiomyopathy. Hum Mol Genet 2014;23:5793–804. PubMed PMC
Seki A, Ishikawa T, Daumy X, Mishima H, Barc J, Sasaki R et al. Progressive atrial conduction defects associated with bone malformation caused by a connexin-45 mutation. J Am Coll Cardiol 2017;70:358–70. PubMed
Limongelli G, Masarone D, Pacileo G. Mitochondrial disease and the heart. Heart 2017;103:390–8. PubMed
Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res 2005;96:800–7. PubMed
Templin C, Ghadri JR, Rougier JS, Baumer A, Kaplan V, Albesa M et al. Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur Heart J 2011;32:1077–88. PubMed PMC
Gollob MH, Redpath CJ, Roberts JD. The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol 2011;57:802–12. PubMed
Giustetto C, Scrocco C, Schimpf R, Maury P, Mazzanti A, Levetto M et al. Usefulness of exercise test in the diagnosis of short QT syndrome. Europace 2015;17:628–34. PubMed
Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 2004;109:30–5. PubMed
Bellocq C, van Ginneken AC, Bezzina CR, Alders M, Escande D, Mannens MM et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 2004;109:2394–7. PubMed
Thorsen K, Dam VS, Kjaer-Sorensen K, Pedersen LN, Skeberdis VA, Jurevicius J et al. Loss-of-activity-mutation in the cardiac chloride-bicarbonate exchanger AE3 causes short QT syndrome. Nat Commun 2017;8:1696. PubMed PMC
Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 2007;115:442–9. PubMed PMC
Hancox JC, Whittaker DG, Du C, Stuart AG, Zhang H. Emerging therapeutic targets in the short QT syndrome. Expert Opin Ther Targets 2018;22:439–51. PubMed
Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H, Hashimoto N et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet 1999;21:91–4. PubMed
Roussel J, Labarthe F, Thireau J, Ferro F, Farah C, Roy J et al. Carnitine deficiency induces a short QT syndrome. Heart Rhythm 2016;13:165–74. PubMed
Gélinas R, Leach E, Horvath G, Laksman Z. Molecular autopsy implicates primary carnitine deficiency in sudden unexplained death and reversible short QT syndrome. Can J Cardiol 2019;35:1256.e1–2. PubMed
Giustetto C, Schimpf R, Mazzanti A, Scrocco C, Maury P, Anttonen O et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol 2011;58:587–95. PubMed
Hu D, Li Y, Zhang J, Pfeiffer R, Gollob MH, Healey J et al. The phenotypic spectrum of a mutation hotspot responsible for the short QT syndrome. JACC Clin Electrophysiol 2017;3:727–43. PubMed
Mazzanti A, Maragna R, Vacanti G, Kostopoulou A, Marino M, Monteforte N et al. Hydroquinidine prevents life-threatening arrhythmic events in patients with short QT syndrome. J Am Coll Cardiol 2017;70:3010–5. PubMed
Raschwitz LS, El-Battrawy I, Schlentrich K, Besler J, Veith M, Roterberg G et al. Differences in short QT syndrome subtypes: a systematic literature review and pooled analysis. Front Genet 2019;10:1312. PubMed PMC
Harrell DT, Ashihara T, Ishikawa T, Tominaga I, Mazzanti A, Takahashi K et al. Genotype-dependent differences in age of manifestation and arrhythmia complications in short QT syndrome. Int J Cardiol 2015;190:393–402. PubMed
Morita H, Kusano-Fukushima K, Nagase S, Fujimoto Y, Hisamatsu K, Fujio H et al. Atrial fibrillation and atrial vulnerability in patients with Brugada syndrome. J Am Coll Cardiol 2002;40:1437–44. PubMed
Olson TM, Michels VV, Ballew JD, Reyna SP, Karst ML, Herron KJ et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA 2005;293:447–54. PubMed PMC
McNair WP, Ku L, Taylor MR, Fain PR, Dao D, Wolfel E et al. ; Familial Cardiomyopathy Registry Research Group . SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 2004;110:2163–7. PubMed
Li Q, Huang H, Liu G, Lam K, Rutberg J, Green MS et al. Gain-of-function mutation of Nav1.5 in atrial fibrillation enhances cellular excitability and lowers the threshold for action potential firing. Biochem Biophys Res Commun 2009;380:132–7. PubMed
Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 2003;299:251–4. PubMed
Orr N, Arnaout R, Gula LJ, Spears DA, Leong-Sit P, Li Q et al. A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation. Nat Commun 2016;7:11303. PubMed PMC
Kumar S, Baldinger SH, Gandjbakhch E, Maury P, Sellal JM, Androulakis AF et al. Long-term arrhythmic and nonarrhythmic outcomes of lamin A/C mutation carriers. J Am Coll Cardiol 2016;68:2299–307. PubMed
Choi SH, Weng LC, Roselli C, Lin H, Haggerty CM, Shoemaker MB et al. ; For the DiscovEHR study and the NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium . Association between titin loss-of-function variants and early-onset atrial fibrillation. JAMA 2018;320:2354–64. PubMed PMC
Yoneda ZT, Anderson KC, Quintana JA, O'Neill MJ, Sims RA, Glazer AM et al. Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes. JAMA Cardiol 2021;6:1371–9. PubMed PMC
Goodyer WR, Dunn K, Caleshu C, Jackson M, Wylie J, Moscarello T et al. Broad genetic testing in a clinical setting uncovers a high prevalence of titin loss-of-function variants in very early onset atrial fibrillation. Circ Genom Precis Med 2019;12:e002713. PubMed PMC
Roberts R. Mechanisms of disease: genetic mechanisms of atrial fibrillation. Nat Clin Pract Cardiovasc Med 2006;3:276–82. PubMed
Darbar D, Herron KJ, Ballew JD, Jahangir A, Gersh BJ, Shen WK et al. Familial atrial fibrillation is a genetically heterogeneous disorder. J Am Coll Cardiol 2003;41:2185–92. PubMed
Sébillon P, Bouchier C, Bidot LD, Bonne G, Ahamed K, Charron P et al. Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J Med Genet 2003;40:560–7. PubMed PMC
Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 2003;421:634–9. PubMed
Hong K, Piper DR, Diaz-Valdecantos A, Brugada J, Oliva A, Burashnikov E et al. De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res 2005;68:433–40. PubMed
Bhuiyan ZA, van den Berg MP, van Tintelen JP, Bink-Boelkens MT, Wiesfeld AC, Alders M et al. Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation 2007;116:1569–76. PubMed
Sy RW, Gollob MH, Klein GJ, Yee R, Skanes AC, Gula LJ et al. Arrhythmia characterization and long-term outcomes in catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2011;8:864–71. PubMed
Gillmore JD, Booth DR, Pepys MB, Hawkins PN. Hereditary cardiac amyloidosis associated with the transthyretin Ile122 mutation in a white man. Heart 1999;82:e2. PubMed PMC
Gutierrez-Roelens I, De Roy L, Ovaert C, Sluysmans T, Devriendt K, Brunner HG et al. A novel CSX/NKX2-5 mutation causes autosomal-dominant AV block: are atrial fibrillation and syncopes part of the phenotype? Eur J Hum Genet 2006;14:1313–6. PubMed
Gollob MH, Seger JJ, Gollob TN, Tapscott T, Gonzales O, Bachinski L et al. Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation 2001;104:3030–3. PubMed
Fuster V, Rydén LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J Am Coll Cardiol 2011;57:e101–98. PubMed
Olson TM, Alekseev AE, Liu XK, Park S, Zingman LV, Bienengraeber M et al. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet 2006;15:2185–91. PubMed
Deo M, Ruan Y, Pandit SV, Shah K, Berenfeld O, Blaufox A et al. KCNJ2 mutation in short QT syndrome 3 results in atrial fibrillation and ventricular proarrhythmia. Proc Natl Acad Sci USA 2013;110:4291–6. PubMed PMC
Hong K, Bjerregaard P, Gussak I, Brugada R. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol 2005;16:394–6. PubMed
Li RG, Xu YJ, Ye WG, Li YJ, Chen H, Qiu XB et al. Connexin45 (GJC1) loss-of-function mutation contributes to familial atrial fibrillation and conduction disease. Heart Rhythm 2021;18:684–93. PubMed
Hodgson-Zingman DM, Karst ML, Zingman LV, Heublein DM, Darbar D, Herron KJ et al. Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med 2008;359:158–65. PubMed PMC
Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR et al. 2018 ACC/AHA/HRS Guideline on the evaluation and management of patients with Bradycardia and cardiac conduction delay: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2019;140:e382–482. PubMed
Jensen MT, Wod M, Galatius S, Hjelmborg JB, Jensen GB, Christensen K. Heritability of resting heart rate and association with mortality in middle-aged and elderly twins. Heart 2018;104:30–6. PubMed PMC
Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, Thorgeirsson G, Stefansdottir H et al. Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet 2010;42:117–22. PubMed
Holm H, Gudbjartsson DF, Sulem P, Masson G, Helgadottir HT, Zanon C et al. A rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nat Genet 2011;43:316–20. PubMed PMC
Ramirez J, Duijvenboden SV, Ntalla I, Mifsud B, Warren HR, Tzanis E et al. Thirty loci identified for heart rate response to exercise and recovery implicate autonomic nervous system. Nat Commun 2018;9:1947. PubMed PMC
Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR et al. 2018 ACC/AHA/HRS Guideline on the evaluation and management of patients with Bradycardia and cardiac conduction delay: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, and the Heart Rhythm Society. J Am Coll Cardiol 2019;74:932–87. PubMed
Veldkamp MW, Wilders R, Baartscheer A, Zegers JG, Bezzina CR, Wilde AA. Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ Res 2003;92:976–83. PubMed
Chiang DY, Kim JJ, Valdes SO, de la Uz C, Fan Y, Orcutt J et al. Loss-of-function SCN5A mutations associated with sinus node dysfunction, atrial arrhythmias, and poor pacemaker capture. Circ Arrhythm Electrophysiol 2015;8:1105–12. PubMed PMC
Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest 2003;111:1537–45. PubMed PMC
Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV et al. HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol 2014;64:745–56. PubMed
Stallmeyer B, Kuß J, Kotthoff S, Zumhagen S, Vowinkel K, Rinné S et al. A mutation in the G-protein gene GNB2 causes familial sinus node and atrioventricular conduction dysfunction. Circ Res 2017;120:e33–44. PubMed
Righi D, Silvetti MS, Drago F. Sinus bradycardia, junctional rhythm, and low-rate atrial fibrillation in Short QT syndrome during 20 years of follow-up: three faces of the same genetic problem. Cardiol Young 2016;26:589–92. PubMed
Whittaker DG, Colman MA, Ni H, Hancox JC, Zhang H. Human atrial arrhythmogenesis and sinus bradycardia in KCNQ1-linked short QT syndrome: insights from computational modelling. Front Physiol 2018;9:1402. PubMed PMC
Kuß J, Stallmeyer B, Goldstein M, Rinné S, Pees C, Zumhagen S et al. Familial sinus node disease caused by a gain of GIRK (G-protein activated inwardly rectifying K(+) channel) channel function. Circ Genom Precis Med 2019;12:e002238. PubMed
Yamada N, Asano Y, Fujita M, Yamazaki S, Inanobe A, Matsuura N et al. Mutant KCNJ3 and KCNJ5 potassium channels as novel molecular targets in bradyarrhythmias and atrial fibrillation. Circulation 2019;139:2157–69. PubMed
Arbel-Ganon L, Behar JA, Gomez AM, Yaniv Y. Distinct mechanisms mediate pacemaker dysfunction associated with catecholaminergic polymorphic ventricular tachycardia mutations: insights from computational modeling. J Mol Cell Cardiol 2020;143:85–95. PubMed
Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nurnberg G et al. Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci 2011;14:77–84. PubMed
Liaqat K, Schrauwen I, Raza SI, Lee K, Hussain S, Chakchouk I et al. ; University of Washington Center for Mendelian Genomics . Identification of CACNA1D variants associated with sinoatrial node dysfunction and deafness in additional Pakistani families reveals a clinical significance. J Hum Genet 2019;64:153–60. PubMed PMC
Lodder EM, De Nittis P, Koopman CD, Wiszniewski W, Moura de Souza CF, Lahrouchi N et al. GNB5 mutations cause an autosomal-recessive multisystem syndrome with sinus bradycardia and cognitive disability. Am J Hum Genet 2016;99:786. PubMed PMC
Chetaille P, Preuss C, Burkhard S, Cote JM, Houde C, Castilloux J et al. ; FORGE Canada Consortium . Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm. Nat Genet 2014;46:1245–9. PubMed
Kong D, Zhan Y, Liu C, Hu Y, Zhou Y, Luo J et al. A novel mutation of the EMD gene in a family with cardiac conduction abnormalities and a high incidence of sudden cardiac death. Pharmgenomics Pers Med 2019;12:319–27. PubMed PMC
Wasserburger RH, Alt WJ. The normal RS-T segment elevation variant. Am J Cardiol 1961;8:184–92. PubMed
Tikkanen JT, Anttonen O, Junttila MJ, Aro AL, Kerola T, Rissanen HA et al. Long-term outcome associated with early repolarization on electrocardiography. N Engl J Med 2009;361:2529–37. PubMed
Rosso R, Kogan E, Belhassen B, Rozovski U, Scheinman MM, Zeltser D et al. J-point elevation in survivors of primary ventricular fibrillation and matched control subjects: incidence and clinical significance. J Am Coll Cardiol 2008;52:1231–8. PubMed
Haïssaguerre M, Derval N, Sacher F, Jesel L, Deisenhofer I, de Roy L et al. Sudden cardiac arrest associated with early repolarization. N Engl J Med 2008;358:2016–23. PubMed
Aizawa Y, Chinushi M, Hasegawa K, Naiki N, Horie M, Kaneko Y et al. Electrical storm in idiopathic ventricular fibrillation is associated with early repolarization. J Am Coll Cardiol 2013;62:1015–9. PubMed
Nam GB, Kim YH, Antzelevitch C. Augmentation of J waves and electrical storms in patients with early repolarization. N Engl J Med 2008;358:2078–9. PubMed PMC
Koncz I, Gurabi Z, Patocskai B, Panama BK, Szél T, Hu D et al. Mechanisms underlying the development of the electrocardiographic and arrhythmic manifestations of early repolarization syndrome. J Mol Cell Cardiol 2014;68:20–8. PubMed PMC
Ghosh S, Cooper DH, Vijayakumar R, Zhang J, Pollak S, Haïssaguerre M et al. Early repolarization associated with sudden death: insights from noninvasive electrocardiographic imaging. Heart Rhythm 2010;7:534–7. PubMed PMC
Nademanee K, Haissaguerre M, Hocini M, Nogami A, Cheniti G, Duchateau J et al. Mapping and ablation of ventricular fibrillation associated with early repolarization syndrome. Circulation 2019;140:1477–90. PubMed
Haïssaguerre M, Nademanee K, Hocini M, Cheniti G, Duchateau J, Frontera A et al. Depolarization versus repolarization abnormality underlying inferolateral J-wave syndromes: new concepts in sudden cardiac death with apparently normal hearts. Heart Rhythm 2019;16:781–90. PubMed PMC
Boukens BJ, Benjacholamas V, van Amersfoort S, Meijborg VM, Schumacher C, Jensen B et al. Structurally abnormal myocardium underlies ventricular fibrillation storms in a patient diagnosed with the early repolarization pattern. JACC Clin Electrophysiol 2020;6:1395–404. PubMed
Reinhard W, Kaess BM, Debiec R, Nelson CP, Stark K, Tobin MD et al. Heritability of early repolarization: a population-based study. Circ Cardiovasc Genet 2011;4:134–8. PubMed
Bastiaenen R, Nolte IM, Munroe PB, Riese H, Nelson C, O'Connor H et al. The narrow-sense and common single nucleotide polymorphism heritability of early repolarization. Int J Cardiol 2019;279:135–40. PubMed
Honarbakhsh S, Srinivasan N, Kirkby C, Firman E, Tobin L, Finlay M et al. Medium-term outcomes of idiopathic ventricular fibrillation survivors and family screening: a multicentre experience. Europace 2017;19:1874–80. PubMed
Nunn LM, Bhar-Amato J, Lowe MD, Macfarlane PW, Rogers P, McKenna WJ et al. Prevalence of J-point elevation in sudden arrhythmic death syndrome families. J Am Coll Cardiol 2011;58:286–90. PubMed
Mellor G, Nelson CP, Robb C, Raju H, Wijeyeratne Y, Hengstenberg C et al. The prevalence and significance of the early repolarization pattern in sudden arrhythmic death syndrome families. Circ Arrhythm Electrophysiol 2016;9:e003960. PubMed
Watanabe H, Nogami A, Ohkubo K, Kawata H, Hayashi Y, Ishikawa T et al. Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation associated with early repolarization. Circ Arrhythm Electrophysiol 2011;4:874–81. PubMed
Giudicessi JR, Ye D, Stutzman MJ, Zhou W, Tester DJ, Ackerman MJ. Prevalence and electrophysiological phenotype of rare SCN5A genetic variants identified in unexplained sudden cardiac arrest survivors. Europace 2020;22:622–31. PubMed
Zhang ZH, Barajas-Martínez H, Xia H, Li B, Capra JA, Clatot J et al. Distinct features of probands with early repolarization and brugada syndromes carrying SCN5A pathogenic variants. J Am Coll Cardiol 2021;78:1603–17. PubMed PMC
Chauveau S, Janin A, Till M, Morel E, Chevalier P, Millat G. Early repolarization syndrome caused by de novo duplication of KCND3 detected by next-generation sequencing. HeartRhythm Case Rep 2017;3:574–8. PubMed PMC
Takayama K, Ohno S, Ding WG, Ashihara T, Fukumoto D, Wada Y et al. A de novo gain-of-function KCND3 mutation in early repolarization syndrome. Heart Rhythm 2019;16:1698–706. PubMed
Teumer A, Trenkwalder T, Kessler T, Jamshidi Y, van den Berg ME, Kaess B et al. KCND3 potassium channel gene variant confers susceptibility to electrocardiographic early repolarization pattern. JCI Insight 2019;4:e131156. PubMed PMC
Barajas-Martínez H, Hu D, Ferrer T, Onetti CG, Wu Y, Burashnikov E et al. Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm 2012;9:548–55. PubMed PMC
Medeiros-Domingo A, Tan BH, Crotti L, Tester DJ, Eckhardt L, Cuoretti A et al. Gain-of-function mutation S422L in the KCNJ8-encoded cardiac K(ATP) channel Kir6.1 as a pathogenic substrate for J-wave syndromes. Heart Rhythm 2010;7:1466–71. PubMed PMC
Vidaillet HJJr, Pressley JC, Henke E, Harrell FEJr, German LD. Familial occurrence of accessory atrioventricular pathways (preexcitation syndrome). N Engl J Med 1987;317:65–9. PubMed
Deal BJ, Keane JF, Gillette PC, Garson AJr. Wolff-Parkinson-White syndrome and supraventricular tachycardia during infancy: management and follow-up. J Am Coll Cardiol 1985;5:130–5. PubMed
MacRae CA, Ghaisas N, Kass S, Donnelly S, Basson CT, Watkins HC et al. Familial hypertrophic cardiomyopathy with Wolff-Parkinson-White syndrome maps to a locus on chromosome 7q3. J Clin Invest 1995;96:1216–20. PubMed PMC
Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, Ali Hassan AS et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 2001;344:1823–31. PubMed
Lopez-Sainz A, Dominguez F, Lopes LR, Ochoa JP, Barriales-Villa R, Climent V et al. ; European Genetic Cardiomyopathies Initiative Investigators . Clinical features and natural history of PRKAG2 variant cardiac glycogenosis. J Am Coll Cardiol 2020;76:186–97. PubMed
Landstrom AP, Parvatiyar MS, Pinto JR, Marquardt ML, Bos JM, Tester DJ et al. Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol 2008;45:281–8. PubMed PMC
Geier C, Gehmlich K, Ehler E, Hassfeld S, Perrot A, Hayess K et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum Mol Genet 2008;17:2753–65. PubMed
Landstrom AP, Weisleder N, Batalden KB, Bos JM, Tester DJ, Ommen SR et al. Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J Mol Cell Cardiol 2007;42:1026–35. PubMed PMC
Al Senaidi K, Joshi N, Al-Nabhani M, Al-Kasbi G, Al Farqani A, Al-Thihli K et al. Phenotypic spectrum of ALPK3-related cardiomyopathy. Am J Med Genet A 2019;179:1235–40. PubMed
Ochoa JP, Sabater-Molina M, García-Pinilla JM, Mogensen J, Restrepo-Córdoba A, Palomino-Doza J et al. Formin homology 2 domain containing 3 (FHOD3) is a genetic basis for hypertrophic cardiomyopathy. J Am Coll Cardiol 2018;72:2457–67. PubMed
Alfares AA, Kelly MA, Mcdermott G, Funke BH, Lebo MS, Baxter SB et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med 2015;17:880–8. PubMed
Ingles J, Sarina T, Yeates L, Hunt L, Macciocca I, McCormack L et al. Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy. Genet Med 2013;15:972–7. PubMed
van Velzen HG, Schinkel AFL, Baart SJ, Oldenburg RA, Frohn-Mulder IME, van Slegtenhorst MA et al. Outcomes of contemporary family screening in hypertrophic cardiomyopathy. Circ Genom Precis Med 2018;11:e001896. PubMed
Norrish G, Jager J, Field E, Quinn E, Fell H, Lord E et al. Yield of clinical screening for hypertrophic cardiomyopathy in child first-degree relatives. Circulation 2019;140:184–92. PubMed PMC
Pena JLB, Santos WC, Siqueira MHA, Sampaio IH, Moura ICG, Sternick EB. Glycogen storage cardiomyopathy (PRKAG2): diagnostic findings of standard and advanced echocardiography techniques. Eur Heart J Cardiovasc Imaging 2021;22:800–7. PubMed
Maron BJ, Roberts WC, Arad M, Haas TS, Spirito P, Wright GB et al. Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 2009;301:1253–9. PubMed PMC
Elliott P, Baker R, Pasquale F, Quarta G, Ebrahim H, Mehta AB et al. ; ACES study group . Prevalence of Anderson-Fabry disease in patients with hypertrophic cardiomyopathy: the European Anderson-Fabry Disease survey. Heart 2011;97:1957–60. PubMed
Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 2018;379:22–31. PubMed
Yavari A, Bellahcene M, Bucchi A, Sirenko S, Pinter K, Herring N et al. Mammalian γ2 AMPK regulates intrinsic heart rate. Nat Commun 2017;8:1258. PubMed PMC
Sternick EB, Oliva A, Gerken LM, Magalhães L, Scarpelli R, Correia FS et al. Clinical, electrocardiographic, and electrophysiologic characteristics of patients with a fasciculoventricular pathway: the role of PRKAG2 mutation. Heart Rhythm 2011;8:58–64. PubMed
Das KJ, Ingles J, Bagnall RD, Semsarian C. Determining pathogenicity of genetic variants in hypertrophic cardiomyopathy: importance of periodic reassessment. Genet Med 2014;16:286–93. PubMed
Ahmad F, McNally EM, Ackerman MJ, Baty LC, Day SM, Kullo IJ et al. Establishment of specialized clinical cardiovascular genetics programs: recognizing the need and meeting standards: a scientific statement from the American Heart Association. Circ Genom Precis Med 2019;12:e000054. PubMed
Ranthe MF, Carstensen L, Øyen N, Jensen MK, Axelsson A, Wohlfahrt J et al. Risk of cardiomyopathy in younger persons with a family history of death from cardiomyopathy: a nationwide family study in a cohort of 3.9 million persons. Circulation 2015;132:1013–9. PubMed
Bagnall RD, Ingles J, Dinger ME, Cowley MJ, Ross SB, Minoche AE et al. Whole genome sequencing improves outcomes of genetic testing in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2018;72:419–29. PubMed
Ho CY, Day SM, Ashley EA, Michels M, Pereira AC, Jacoby D et al. ; For the SHaRe Investigators . Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation 2018;138:1387–98. PubMed PMC
Thomson KL, Ormondroyd E, Harper AR, Dent T, McGuire K, Baksi J et al. ; NIHR BioResource – Rare Diseases Consortium . Analysis of 51 proposed hypertrophic cardiomyopathy genes from genome sequencing data in sarcomere negative cases has negligible diagnostic yield. Genet Med 2019;21:1576–84. PubMed PMC
Valdés-Mas R, Gutiérrez-Fernández A, Gómez J, Coto E, Astudillo A, Puente DA et al. Mutations in filamin C cause a new form of familial hypertrophic cardiomyopathy. Nat Commun 2014;5:5326. PubMed
Ingles J, Burns C, Bagnall RD, Lam L, Yeates L, Sarina T et al. Nonfamilial hypertrophic cardiomyopathy: prevalence, natural history, and clinical implications. Circ Cardiovasc Genet 2017;10:e001620. PubMed
van Capelle CI, Poelman E, Frohn-Mulder IM, Koopman LP, van den Hout JMP, Régal L et al. Cardiac outcome in classic infantile Pompe disease after 13 years of treatment with recombinant human acid alpha-glucosidase. Int J Cardiol 2018;269:104–10. PubMed
Landstrom AP, Adekola BA, Bos JM, Ommen SR, Ackerman MJ. PLN-encoded phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases: summary of the literature and implications for genetic testing. Am Heart J 2011;161:165–71. PubMed PMC
Kouz K, Lissewski C, Spranger S, Mitter D, Riess A, Lopez-Gonzalez V et al. Genotype and phenotype in patients with Noonan syndrome and a RIT1 mutation. Genet Med 2016;18:1226–34. PubMed
Mathew J, Zahavich L, Lafreniere-Roula M, Wilson J, George K, Benson L et al. Utility of genetics for risk stratification in pediatric hypertrophic cardiomyopathy. Clin Genet 2018;93:310–9. PubMed
Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet 2005;42:e59. PubMed PMC
Miron A, Lafreniere-Roula MS, Fan CP, Armstrong KR, Dragulescu A, Papaz T et al. A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation 2020;142:217–29. PubMed PMC
Christiaans I, Birnie E, Bonsel GJ, Mannens MM, Michels M, Majoor-Krakauer D et al. Manifest disease, risk factors for sudden cardiac death, and cardiac events in a large nationwide cohort of predictively tested hypertrophic cardiomyopathy mutation carriers: determining the best cardiological screening strategy. Eur Heart J 2011;32:1161–70. PubMed
Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 2015;36:1123–35a. PubMed
Ware JS, Amor-Salamanca A, Tayal U, Govind R, Serrano I, Salazar-Mendiguchía J et al. Genetic etiology for alcohol-induced cardiac toxicity. J Am Coll Cardiol 2018;71:2293–302. PubMed PMC
Ware JS, Li J, Mazaika E, Yasso CM, Desouza T, Cappola TP et al. ; IMAC-2 and IPAC Investigators . Shared genetic predisposition in peripartum and dilated cardiomyopathies. N Engl J Med 2016;374:233–41. PubMed PMC
Thuillot M, Maupain C, Gandjbakhch E, Waintraub X, Hidden-Lucet F, Isnard R et al. External validation of risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers. Eur J Heart Fail 2019;21:253–4. PubMed
Peters S, Kumar S, Elliott P, Kalman JM, Fatkin D. Arrhythmic genotypes in familial dilated cardiomyopathy: implications for genetic testing and clinical management. Heart Lung Circ 2019;28:31–8. PubMed
Kayvanpour E, Sedaghat-Hamedani F, Amr A, Lai A, Haas J, Holzer DB et al. Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol 2017;106:127–39. PubMed
Ortiz-Genga MF, Cuenca S, Dal Ferro M, Zorio E, Salgado-Aranda R, Climent V et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J Am Coll Cardiol 2016;68:2440–51. PubMed
Ader F, De Groote P, Réant P, Rooryck-Thambo C, Dupin-Deguine D, Rambaud C et al. FLNC pathogenic variants in patients with cardiomyopathies: prevalence and genotype-phenotype correlations. Clin Genet 2019;96:317–29. PubMed
Wahbi K, Béhin A, Charron P, Dunand M, Richard P, Meune C et al. High cardiovascular morbidity and mortality in myofibrillar myopathies due to DES gene mutations: a 10-year longitudinal study. Neuromuscul Disord 2012;22:211–8. PubMed
Heliö T, Elliott P, Koskenvuo JW, Gimeno JR, Tavazzi L, Tendera M et al. ; EORP Cardiomyopathy Registry Investigators Group . ESC EORP Cardiomyopathy Registry: real-life practice of genetic counselling and testing in adult cardiomyopathy patients. ESC Heart Fail 2020;7:3013–21. PubMed PMC
European Society of Human Genetics . Genetic testing in asymptomatic minors: recommendations of the European Society of Human Genetics. Eur J Hum Genet 2009;17:720–1. PubMed PMC
Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2008;29:270–6. PubMed
Keren A, Gottlieb S, Tzivoni D, Stern S, Yarom R, Billingham ME et al. Mildly dilated congestive cardiomyopathy. Use of prospective diagnostic criteria and description of the clinical course without heart transplantation. Circulation 1990;81:506–17. PubMed
Grunig E, Tasman JA, Kucherer H, Franz W, Kubler W, Katus HA. Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol 1998;31:186–94. PubMed
Mahon NG, Murphy RT, MacRae CA, Caforio AL, Elliott PM, McKenna WJ. Echocardiographic evaluation in asymptomatic relatives of patients with dilated cardiomyopathy reveals preclinical disease. Ann Intern Med 2005;143:108–15. PubMed
Michels VV, Moll PP, Miller FA, Tajik AJ, Chu JS, Driscoll DJ et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med 1992;326:77–82. PubMed
Asselbergs FW, Sammani A, Elliott P, Gimeno JR, Tavazzi L, Tendera M et al. ; Cardiomyopathy & Myocarditis Registry Investigators Group . Differences between familial and sporadic dilated cardiomyopathy: ESC EORP Cardiomyopathy & Myocarditis registry. ESC Heart Fail 2021;8:95–105. PubMed PMC
Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, Lunde IG, Wakimoto H, Smith AM et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation 2019;140:31–41. PubMed PMC
Kontorovich AR, Patel N, Moscati A, Richter F, Peter I, Purevjav E et al. Myopathic cardiac genotypes increase risk for myocarditis. JACC Basic Transl Sci 2021;6:584–92. PubMed PMC
Mazzarotto F, Tayal U, Buchan RJ, Midwinter W, Wilk A, Whiffin N et al. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation 2020;141:387–98. PubMed PMC
Jordan E, Hershberger RE. Considering complexity in the genetic evaluation of dilated cardiomyopathy. Heart 2021;107:106–12. PubMed PMC
Garnier S, Harakalova M, Weiss S, Mokry M, Regitz-Zagrosek V, Hengstenberg C et al. Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23. Eur Heart J 2021;42:2000–11. PubMed PMC
Mogensen J, van Tintelen JP, Fokstuen S, Elliott P, van Langen IM, Meder B et al. The current role of next-generation DNA sequencing in routine care of patients with hereditary cardiovascular conditions: a viewpoint paper of the European Society of Cardiology working group on myocardial and pericardial diseases and members of the European Society of Human Genetics. Eur Heart J 2015;36:1367–70. PubMed
Peters S, Johnson R, Birch S, Zentner D, Hershberger RE, Fatkin D. Familial dilated cardiomyopathy. Heart Lung Circ 2020;29:566–74. PubMed
Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, Böhm M et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J 2016;37:1850–8. PubMed
Hasselberg NE, Haland TF, Saberniak J, Brekke PH, Berge KE, Leren TP et al. Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation. Eur Heart J 2018;39:853–60. PubMed PMC
Kuliev A, Pomerantseva E, Polling D, Verlinsky O, Rechitsky S. PGD for inherited cardiac diseases. Reprod Biomed Online 2012;24:443–53. PubMed
Hoorntje ET, Bollen IA, Barge-Schaapveld DQ, van Tienen FH, Te Meerman GJ, Jansweijer JA et al. Lamin A/C-related cardiac disease: late onset with a variable and mild phenotype in a large cohort of patients with the lamin A/C p.(Arg331Gln) founder mutation. Circ Cardiovasc Genet 2017;10:e001631. PubMed
Verdonschot JAJ, Hazebroek MR, Derks KWJ, Barandiarán Aizpurua A, Merken JJ, Wang P et al. Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and long-term life-threatening arrhythmias. Eur Heart J 2018;39:864–73. PubMed
Gigli M, Merlo M, Graw SL, Barbati G, Rowland TJ, Slavov DB et al. Genetic risk of arrhythmic phenotypes in patients with dilated cardiomyopathy. J Am Coll Cardiol 2019;74:1480–90. PubMed PMC
Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 2019;16:e301–72. PubMed
Van Lint FHM, Murray B, Tichnell C, Zwart R, Amat N, Lekanne Deprez RH et al. Arrhythmogenic right ventricular cardiomyopathy-associated desmosomal variants are rarely de novo. Circ Genom Precis Med 2019;12:e002467. PubMed
Corrado D, Perazzolo Marra M, Zorzi A, Beffagna G, Cipriani A, Lazzari MD et al. Diagnosis of arrhythmogenic cardiomyopathy: the Padua criteria. Int J Cardiol 2020;319:106–14. PubMed
Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 2011;8:1308–39. PubMed
Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med 2017;19:192–203. PubMed PMC
Corrado D, van Tintelen PJ, McKenna WJ, Hauer RNW, Anastastakis A, Asimaki A et al. ; International Experts . Arrhythmogenic right ventricular cardiomyopathy: evaluation of the current diagnostic criteria and differential diagnosis. Eur Heart J 2020;41:1414–29. PubMed PMC
Fressart V, Duthoit G, Donal E, Probst V, Deharo JC, Chevalier P et al. Desmosomal gene analysis in arrhythmogenic right ventricular dysplasia/cardiomyopathy: spectrum of mutations and clinical impact in practice. Europace 2010;12:861–8. PubMed
van der Zwaag PA, van Rijsingen IA, Asimaki A, Jongbloed JD, van Veldhuisen DJ, Wiesfeld AC et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur J Heart Fail 2012;14:1199–207. PubMed PMC
Hodgkinson KA, Connors SP, Merner N, Haywood A, Young TL, McKenna WJ et al. The natural history of a genetic subtype of arrhythmogenic right ventricular cardiomyopathy caused by a p.S358L mutation in TMEM43. Clin Genet 2013;83:321–31. PubMed
Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 2001;10:189–94. PubMed
Protonotarios A, Brodehl A, Asimaki A, Jager J, Quinn E, Stanasiuk C et al. The novel desmin variant p.Leu115Ile is associated with a unique form of biventricular Arrhythmogenic Cardiomyopathy. Can J Cardiol 2021;37:857–66. PubMed
Bermúdez-Jiménez FJ, Carriel V, Brodehl A, Alaminos M, Campos A, Schirmer I et al. Novel desmin mutation p.Glu401Asp impairs filament formation, disrupts cell membrane integrity, and causes severe arrhythmogenic left ventricular cardiomyopathy/dysplasia. Circulation 2018;137:1595–610. PubMed
Marey I, Fressart V, Rambaud C, Fornes P, Martin L, Grotto S et al. Clinical impact of post-mortem genetic testing in cardiac death and cardiomyopathy. Open Med (Wars) 2020;15:435–46. PubMed PMC
Groeneweg JA, Bhonsale A, James CA, Te Riele AS, Dooijes D, Tichnell C et al. Clinical presentation, long-term follow-up, and outcomes of 1001 arrhythmogenic right ventricular dysplasia/cardiomyopathy patients and family members. Circ Cardiovasc Genet 2015;8:437–46. PubMed
Quarta G, Muir A, Pantazis A, Syrris P, Gehmlich K, Garcia-Pavia P et al. Familial evaluation in arrhythmogenic right ventricular cardiomyopathy: impact of genetics and revised task force criteria. Circulation 2011;123:2701–9. PubMed
James CA, Syrris P, van Tintelen JP, Calkins H. The role of genetics in cardiovascular disease: arrhythmogenic cardiomyopathy. Eur Heart J 2020;41:1393–400. PubMed
Ghidoni A, Elliott PM, Syrris P, Calkins H, James CA, Judge DP et al. Cadherin 2-related arrhythmogenic cardiomyopathy: prevalence and clinical features. Circ Genom Precis Med 2021;14:e003097. PubMed PMC
Ross SB, Singer ES, Driscoll E, Nowak N, Yeates L, Puranik R et al. Genetic architecture of left ventricular noncompaction in adults. Hum Genome Var 2020;7:33. PubMed PMC
Verstraelen TE, van Lint FHM, Bosman LP, de Brouwer R, Proost VM, Abeln BGS et al. Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers-reaching the frontiers of individual risk prediction. Eur Heart J 2021;42:2842–50. PubMed PMC
Cadrin-Tourigny J, Bosman LP, Wang W, Tadros R, Bhonsale A, Bourfiss M et al. Sudden cardiac death prediction in arrhythmogenic right ventricular cardiomyopathy: a multinational collaboration. Circ Arrhythm Electrophysiol 2021;14:e008509. PubMed PMC
Rigato I, Bauce B, Rampazzo A, Zorzi A, Pilichou K, Mazzotti E et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet 2013;6:533–42. PubMed
Bhonsale A, Groeneweg JA, James CA, Dooijes D, Tichnell C, Jongbloed JDH et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J 2015;36:847–55. PubMed
James CA, Bhonsale A, Tichnell C, Murray B, Russell SD, Tandri H et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol 2013;62:1290–7. PubMed PMC
Sawant ACT, Riele ASJM, Tichnell C, Murray B, Bhonsale A, Tandri H et al. Safety of American Heart Association-recommended minimum exercise for desmosomal mutation carriers. Heart Rhythm 2016;13:199–207. PubMed
Van Waning JI, Caliskan K, Hoedemaekers YM, Van Spaendonck-Zwarts KY, Baas AF, Boekholdt SM et al. Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J Am Coll Cardiol 2018;71:711–22. PubMed
Liu S, Bai Y, Huang J, Zhao H, Zhang X, Hu S et al. Do mitochondria contribute to left ventricular non-compaction cardiomyopathy? New findings from myocardium of patients with left ventricular non-compaction cardiomyopathy. Mol Genet Metab 2013;109:100–6. PubMed
Richard P, Ader F, Roux M, Donal E, Eicher JC, Aoutil N et al. Targeted panel sequencing in adult patients with left ventricular non-compaction reveals a large genetic heterogeneity. Clin Genet 2019;95:356–67. PubMed
Vanlerberghe C, Jourdain A-S, Ghoumid J, Frenois F, Mezel A, Vaksmann G et al. Holt-Oram syndrome: clinical and molecular description of 78 patients with TBX5 variants. Eur J Hum Genet 2019;27:360–8. PubMed PMC
Maury P, Gandjbakhch E, Baruteau A-E, Bessière F, Kyndt F, Bouvagnet P et al. Cardiac phenotype and long-term follow-up of patients with mutations in NKX2-5 gene. J Am Coll Cardiol 2016;68:2389–90. PubMed
Ross SB, Bagnall RD, Yeates L, Sy RW, Semsarian C. Holt-Oram syndrome in two families diagnosed with left ventricular noncompaction and conduction disease. HeartRhythm Case Rep 2018;4:146–51. PubMed PMC
Femia G, Zhu D, Choudhary P, Ross SB, Muthurangu V, Richmond D et al. Long term clinical outcomes associated with CMR quantified isolated left ventricular non-compaction in adults. Int J Cardiol 2021;328:235–40. PubMed
Mazzarotto F, Hawley MH, Beltrami M, Beekman L, de Marvao A, McGurk KA et al. Systematic large-scale assessment of the genetic architecture of left ventricular noncompaction reveals diverse etiologies. Genet Med 2021;23:856–64. PubMed PMC
Ross SB, Semsarian C. Clinical and genetic complexities of left ventricular noncompaction: preventing overdiagnosis in a disease we do not understand. JAMA Cardiol 2018;3:1033–4. PubMed
Ross SB, Jones K, Blanch B, Puranik R, McGeechan K, Barratt A et al. A systematic review and meta-analysis of the prevalence of left ventricular non-compaction in adults. Eur Heart J 2020;41:1428–36. PubMed
Gallego-Delgado M, Delgado JF, Brossa-Loidi V, Palomo J, Marzoa-Rivas R, Perez-Villa F et al. Idiopathic restrictive cardiomyopathy is primarily a genetic disease. J Am Coll Cardiol 2016;67:3021–3. PubMed
Kaski JP, Syrris P, Burch M, Tome-Esteban MT, Fenton M, Christiansen M et al. Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart 2008;94:1478–84. PubMed
Sen-Chowdhry S, Syrris P, McKenna WJ. Genetics of restrictive cardiomyopathy. Heart Fail Clin 2010;6:179–86. PubMed
Ton V-K, Mukherjee M, Judge DP. Transthyretin cardiac amyloidosis: pathogenesis, treatments, and emerging role in heart failure with preserved ejection fraction. Clin Med Insights Cardiol 2014;8(Suppl 1):39–44. PubMed PMC
Buxbaum JN, Ruberg FL. Transthyretin V122I (pV142I)* cardiac amyloidosis: an age-dependent autosomal dominant cardiomyopathy too common to be overlooked as a cause of significant heart disease in elderly African Americans. Genet Med 2017;19:733–42. PubMed PMC
Germain DP, Charrow J, Desnick RJ, Guffon N, Kempf J, Lachmann RH et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet 2015;52:353–8. PubMed PMC
Emdin M, Aimo A, Rapezzi C, Fontana M, Perfetto F, Seferovic PM et al. Treatment of cardiac transthyretin amyloidosis: an update. Eur Heart J 2019;40:3699–706. PubMed
Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 2018;379:1007–16. PubMed
Behr ER, Casey A, Sheppard M, Wright M, Bowker TJ, Davies MJ et al. Sudden arrhythmic death syndrome: a national survey of sudden unexplained cardiac death. Heart 2007;93:601–5. PubMed PMC
Lahrouchi N, Raju H, Lodder EM, Papatheodorou S, Miles C, Ware JS et al. The yield of postmortem genetic testing in sudden death cases with structural findings at autopsy. Eur J Hum Genet 2020;28:17–22. PubMed PMC
de Noronha SV, Behr ER, Papadakis M, Ohta-Ogo K, Banya W, Wells J et al. The importance of specialist cardiac histopathological examination in the investigation of young sudden cardiac deaths. Europace 2014;16:899–907. PubMed
Tester DJ, Medeiros-Domingo A, Will ML, Haglund CM, Ackerman MJ. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc 2012;87:524–39. PubMed PMC
Bagnall RD, Weintraub RG, Ingles J, Duflou J, Yeates L, Lam L et al. A prospective study of sudden cardiac death among children and young adults. N Engl J Med 2016;374:2441–52. PubMed
Lahrouchi N, Raju H, Lodder EM, Papatheodorou E, Ware JS, Papadakis M et al. Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome. J Am Coll Cardiol 2017;69:2134–45. PubMed PMC
Isbister JC, Nowak N, Butters A, Yeates L, Gray B, Sy RW et al. "Concealed cardiomyopathy" as a cause of previously unexplained sudden cardiac arrest. Int J Cardiol 2021;324:96–101. PubMed
Anderson JH, Tester DJ, Will ML, Ackerman MJ. Whole-exome molecular autopsy after exertion-related sudden unexplained death in the young. Circ Cardiovasc Genet 2016;9:259–65. PubMed
Shanks GW, Tester DJ, Ackerman JP, Simpson MA, Behr ER, White SM et al. Importance of variant interpretation in whole-exome molecular autopsy: population-based case series. Circulation 2018;137:2705–15. PubMed
Grondin SD, Davies B Cadrin-Tourigny J, Steinberg C, Cheung CC, Jorda P et al. Importance of genetic testing in unexplained cardiac arrest. Eur Heart J 2022;doi:10.1093/eurheartj/ehac145. PubMed PMC
Zipes DP, Wellens HJ. Sudden cardiac death. Circulation 1998;98:2334–51. PubMed
Survivors of out-of-hospital cardiac arrest with apparently normal heart. Need for definition and standardized clinical evaluation. Consensus Statement of the Joint Steering Committees of the Unexplained Cardiac Arrest Registry of Europe and of the Idiopathic Ventricular Fibrillation Registry of the United States. Circulation 1997;95:265–72. PubMed
Mellor G, Laksman ZWM, Tadros R, Roberts JD, Gerull B, Simpson CS et al. Genetic testing in the evaluation of unexplained cardiac arrest: from the CASPER (Cardiac Arrest Survivors With Preserved Ejection Fraction Registry). Circ Cardiovasc Genet 2017;10:e001686. PubMed
Asatryan B, Schaller A, Seiler J, Servatius H, Noti F, Baldinger SH et al. Usefulness of genetic testing in sudden cardiac arrest survivors with or without previous clinical evidence of heart disease. Am J Cardiol 2019;123:2031–8. PubMed
Visser M, Dooijes D, van der Smagt JJ, van der Heijden JF, Doevendans PA, Loh P et al. Next-generation sequencing of a large gene panel in patients initially diagnosed with idiopathic ventricular fibrillation. Heart Rhythm 2017;14:1035–40. PubMed
Matassini MV, Krahn AD, Gardner M, Champagne J, Sanatani S, Birnie DH et al. Evolution of clinical diagnosis in patients presenting with unexplained cardiac arrest or syncope due to polymorphic ventricular tachycardia. Heart Rhythm 2014;11:274–81. PubMed
Alders M, Koopmann TT, Christiaans I, Postema PG, Beekman L, Tanck MW et al. Haplotype-sharing analysis implicates chromosome 7q36 harboring DPP6 in familial idiopathic ventricular fibrillation. Am J Hum Genet 2009;84:468–76. PubMed PMC
Fujii Y, Itoh H, Ohno S, Murayama T, Kurebayashi N, Aoki H et al. A type 2 ryanodine receptor variant associated with reduced Ca(2+) release and short-coupled torsades de pointes ventricular arrhythmia. Heart Rhythm 2017;14:98–107. PubMed
Li Y, Wei J, Guo W, Sun B, Estillore JP, Wang R et al. Human RyR2 (Ryanodine Receptor 2) loss-of-function mutations: clinical phenotypes and in vitro characterization. Circ Arrhythm Electrophysiol 2021;14:e010013. PubMed
Mone F, Stott BK, Hamilton S, Seale AN, Quinlan-Jones E, Allen S et al. The diagnostic yield of prenatal genetic technologies in congenital heart disease: a prospective cohort study. Fetal Diagn Ther 2021;1–8. PubMed
Qiao F, Wang Y, Zhang C, Zhou R, Wu Y, Wang C et al. Comprehensive evaluation of genetic variants in fetuses with congenital heart defect using chromosomal microarray analysis and exome sequencing. Ultrasound Obstet Gynecol 2021;58:377–87. PubMed
Mone F, Eberhardt RY, Morris RK, Hurles ME, McMullan DJ, Maher ER et al. ; the CODE Study Collaborators . COngenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study: prospective cohort study and systematic review. Ultrasound Obstet Gynecol 2021;57:43–51. PubMed
Hanchard NA, Umana LA, D'Alessandro L, Azamian M, Poopola M, Morris SA et al. Assessment of large copy number variants in patients with apparently isolated congenital left-sided cardiac lesions reveals clinically relevant genomic events. Am J Med Genet A 2017;173:2176–88. PubMed PMC
Hauser NS, Solomon BD, Vilboux T, Khromykh A, Baveja R, Bodian DL. Experience with genomic sequencing in pediatric patients with congenital cardiac defects in a large community hospital. Mol Genet Genomic Med 2018;6:200–12. PubMed PMC
Brunelli L, Jenkins SM, Gudgeon JM, Bleyl SB, Miller CE, Tvrdik T et al. Targeted gene panel sequencing for the rapid diagnosis of acutely ill infants. Mol Genet Genomic Med 2019;7:e00796. PubMed PMC
Thienpont B, Mertens L, de Ravel T, Eyskens B, Boshoff D, Maas N et al. Submicroscopic chromosomal imbalances detected by array-CGH are a frequent cause of congenital heart defects in selected patients. Eur Heart J 2007;28:2778–84. PubMed
Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet 2017;49:1593–601. PubMed PMC
Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 2015;350:1262–6. PubMed PMC
Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki SH, Thienpont B et al. ; Deciphering Developmental Disorders Study . Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet 2016;48:1060–5. PubMed PMC
Alankarage D, Ip E, Szot JO, Munro J, Blue GM, Harrison K et al. Identification of clinically actionable variants from genome sequencing of families with congenital heart disease. Genet Med 2019;21:1111–20. PubMed
Jia Y, Louw JJ, Breckpot J, Callewaert B, Barrea C, Sznajer Y et al. The diagnostic value of next generation sequencing in familial nonsyndromic congenital heart defects. Am J Med Genet A 2015;167a:1822–9. PubMed
Blue GM, Kirk EP, Giannoulatou E, Dunwoodie SL, Ho JW, Hilton DC et al. Targeted next-generation sequencing identifies pathogenic variants in familial congenital heart disease. J Am Coll Cardiol 2014;64:2498–506. PubMed
LaHaye S, Corsmeier D, Basu M, Bowman JL, Fitzgerald-Butt S, Zender G et al. Utilization of whole exome sequencing to identify causative mutations in familial congenital heart disease. Circ Cardiovasc Genet 2016;9:320–9. PubMed PMC
Breckpot J, Thienpont B, Arens Y, Tranchevent LC, Vermeesch JR, Moreau Y et al. Challenges of interpreting copy number variation in syndromic and non-syndromic congenital heart defects. Cytogenet Genome Res 2011;135:251–9. PubMed
Liu H, Giguet-Valard AG, Simonet T, Szenker-Ravi E, Lambert L, Vincent-Delorme C et al. Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy. Hum Mutat 2020;41:2167–78. PubMed
Li AH, Hanchard NA, Azamian M, D’Alessandro LCA, Coban-Akdemir Z, Lopez KN et al. Genetic architecture of laterality defects revealed by whole exome sequencing. Eur J Hum Genet 2019;27:563–73. PubMed PMC
Gileles-Hillel A, Mor-Shaked H, Shoseyov D, Reiter J, Tsabari R, Hevroni A et al. Whole-exome sequencing accuracy in the diagnosis of primary ciliary dyskinesia. ERJ Open Res 2020;6:00213–2020. PubMed PMC
Boskovski MT, Homsy J, Nathan M, Sleeper LA, Morton S, Manheimer KB et al. De novo damaging variants, clinical phenotypes, and post-operative outcomes in congenital heart disease. Circ Genom Precis Med 2020;13:e002836. PubMed PMC
Ellesøe SG, Johansen MM, Bjerre JV, Hjortdal VE, Brunak S, Larsen LA. Familial atrial septal defect and sudden cardiac death: identification of a novel NKX2-5 mutation and a review of the literature. Congenit Heart Dis 2016;11:283–90. PubMed PMC
Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Yi CH et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 1997;15:21–9. PubMed
Blue GM, Smith J, Sholler GF, Semsarian C, Winlaw DS; Australian Genomics Cardiovascular Genetic Disorders Flagship . Current practice of genetic testing and counselling in congenital heart disease: an Australian perspective. Heart Lung Circ 2020;29:1733–6. PubMed
Zhang TN, Wu QJ, Liu YS, Lv JL, Sun H, Chang Q et al. Environmental risk factors and congenital heart disease: an umbrella review of 165 systematic reviews and meta-analyses with more than 120 million participants. Front Cardiovasc Med 2021;8:640729. PubMed PMC
Geng J, Picker J, Zheng Z, Zhang X, Wang J, Hisama F et al. Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genomics 2014;15:1127. PubMed PMC
Szot JO, Cuny H, Blue GM, Humphreys DT, Ip E, Harrison K et al. A screening approach to identify clinically actionable variants causing congenital heart disease in exome data. Circ Genom Precis Med 2018;11:e001978. PubMed
Lander J, Ware SM. Copy number variation in congenital heart defects. Curr Genet Med Rep 2014;2:168–78.
Powis Z, Thrush D, Davis BT, Dolinsky JS. Diagnostic exome sequencing in pediatric patients with congenital heart disease. J Am Coll Cardiol 2016;67:991. PubMed
Morrish AM, Smith J, Enriquez A, Sholler GF, Mervis J, Dunwoodie SL et al. A new era of genetic testing in congenital heart disease: a review. Trends Cardiovasc Med 2021;doi: 10.1016/j.tcm2021.04.011. PubMed
Richardson A, Ormond KE. Ethical considerations in prenatal testing: genomic testing and medical uncertainty. Semin Fetal Neonatal Med 2018;23:1–61.. PubMed
Iwarsson E, Jacobsson B, Dagerhamn J, Davidson T, Bernabé E, Heibert Arnlind M. Analysis of cell-free fetal DNA in maternal blood for detection of trisomy 21, 18 and 13 in a general pregnant population and in a high risk population—a systematic review and meta-analysis. Acta Obstet Gynecol Scand 2017;96:7–18. PubMed
Kagan KO, Sroka F, Sonek J, Abele H, Lüthgens K, Schmid M et al. First-trimester risk assessment based on ultrasound and cell-free DNA vs combined screening: a randomized controlled trial. Ultrasound Obstet Gynecol 2018;51:437–44. PubMed
Migliorini S, Saccone G, Silvestro F, Massaro G, Arduino B, D'Alessandro P et al. First-trimester screening based on cell-free DNA vs combined screening: a randomized clinical trial on women's experience. Prenat Diagn 2020;40:1482–8. PubMed
Russell MW, Chung WK, Kaltman JR, Miller TA. Advances in the understanding of the genetic determinants of congenital heart disease and their impact on clinical outcomes. JAHA 2018;7:e006906. PubMed PMC
Zaidi S, Brueckner M. Genetics and genomics of congenital heart disease. Circ Res 2017;120:923–40. PubMed PMC
Hureaux M, Guterman S, Hervé B, Till M, Jaillard S, Redon S et al. Chromosomal microarray analysis in fetuses with an isolated congenital heart defect: A retrospective, nationwide, multicenter study in France. Prenat Diagn 2019;39:464–70. PubMed
van Nisselrooij AEL, Lugthart MA, Clur SA, Linskens IH, Pajkrt E, Rammeloo LA et al. The prevalence of genetic diagnoses in fetuses with severe congenital heart defects. Genet Med 2020;22:1206–14. PubMed PMC
Landstrom AP, Kim JJ, Gelb BD, Helm BM, Kannankeril PJ, Semsarian C et al. Genetic testing for heritable cardiovascular diseases in pediatric patients: a scientific statement from the American Heart Association. Circ Genom Precis Med 2021;14:e000086. PubMed PMC
Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 2015;161:161–72. PubMed PMC
Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, Roos C et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med 2008;358:1240–9. PubMed
Myocardial Infarction Genetics C, Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 2009;41:334–41. PubMed PMC
Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 2017;377:111–21. PubMed PMC
Inouye M, Abraham G, Nelson CP, Wood AM, Sweeting MJ, Dudbridge F et al. ; UK Biobank CardioMetabolic Consortium CHD Working Group . Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J Am Coll Cardiol 2018;72:1883–93. PubMed PMC
Mosley JD, Gupta DK, Tan J, Yao J, Wells QS, Shaffer CM et al. Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease. JAMA 2020;323:627–35. PubMed PMC
Elliott J, Bodinier B, Bond TA, Chadeau-Hyam M, Evangelou E, Moons KGM et al. Predictive accuracy of a polygenic risk score-enhanced prediction model vs a clinical risk score for coronary artery disease. JAMA 2020;323:636–45. PubMed PMC
Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield M, Devlin JJ et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet 2015;385:2264–71. PubMed PMC
Bongianino R, Priori SG. Gene therapy to treat cardiac arrhythmias. Nat Rev Cardiol 2015;12:531–46. PubMed
Matsa LS, Sagurthi SR, Ananthapur V, Nalla S, Nallari P. Endothelin 1 gene as a modifier in dilated cardiomyopathy. Gene 2014;548:256–62. PubMed
Jiang J, Wakimoto H, Seidman JG, Seidman CE. Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science 2013;342:111–4. PubMed PMC
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020;38:824–44. PubMed
Dotzler SM, Kim CSJ, Gendron WAC, Zhou W, Ye D, Bos JM et al. Suppression-replacement KCNQ1 gene therapy for type 1 long QT syndrome. Circulation 2021;143:1411–25. PubMed
Idiopathic Ventricular Fibrillation - Just How Much Idiopathic is it?