Generation of a CHIP isogenic human iPSC-derived cortical neuron model for functional proteomics
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35391935
PubMed Central
PMC8980993
DOI
10.1016/j.xpro.2022.101247
PII: S2666-1667(22)00127-7
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR, Cell Biology, Cell Differentiation, Cell culture, Mass Spectrometry, Neuroscience, Proteomics, Stem Cells,
- MeSH
- hmotnostní spektrometrie MeSH
- indukované pluripotentní kmenové buňky * MeSH
- lidé MeSH
- neurony MeSH
- proteom genetika MeSH
- proteomika metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
The neuroprotective E3-ubiquitin ligase CHIP is linked to healthy aging. Here, we present a protocol using a patient-derived iPSC line with a triplication of the α-synuclein gene to produce gene-edited cells isogenic for CHIP. We describe iPSC differentiation into cortical neurons and their identity validation. We then detail mass spectrometry-based approaches (SWATH-MS) to identify dominant changes in the steady state proteome generated by loss of CHIP function. This protocol can be adapted to other proteins that impact proteostasis in neurons. For complete details on the use and execution of this protocol, please refer to Dias et al. (2021).
Zobrazit více v PubMed
Ball K., Ning J., Nita E., Dias C. The functions of CHIP in age related disease. JSM Enzymol. Protein Sci. 2016;1:1–10.
Bassani-Sternberg M., Pletscher-Frankild S., Jensen L.J., Mann M. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol. Cell Proteom. 2015;14:658–673. PubMed PMC
Boergermann J.H., Kopf J., Yu P.B., Knaus P. Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int. J. Biochem. Cell Biol. 2010;42:1802–1807. PubMed PMC
Burande C.F., Heuzé M.L., Lamsoul I., Monsarrat B., Uttenweiler-Joseph S., Lutz P.G. A label-free quantitative proteomics strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation. Mol. Cell Proteom. 2009;8:1719–1727. PubMed PMC
Chakrabarti A.M., Henser-Brownhill T., Monserrat J., Poetsch A.R., Luscombe N.M., Scaffidi P. Target-specific precision of CRISPR-mediated genome editing. Mol. Cell. 2019;73:699–713.e6. PubMed PMC
Chambers S.M., Fasano C.A., Papapetrou E.P., Tomishima M., Sadelain M., Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 2009;27:275–280. PubMed PMC
Connell P., Ballinger C.A., Jiang J., Wu Y., Thompson L.J., Höhfeld J., Patterson C. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell Biol. 2001;3:93–96. PubMed
Devine M.J., Ryten M., Vodicka P., Thomson A.J., Burdon T., Houlden H., Cavaleri F., Nagano M., Drummond N.J., Taanman J.W., et al. Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nat. Commun. 2011;2:440. PubMed PMC
Dias C., Nita E., Faktor J., Tynan A.C., Hernychova L., Vojtesek B., Nylandsted J., Hupp T.R., Kunath T., Ball K.L. CHIP-dependent regulation of the actin cytoskeleton is linked to neuronal cell membrane integrity. iScience. 2021;24:102878. PubMed PMC
Eden E., Lipson D., Yogev S., Yakhini Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput. Biol. 2007;3:e39. PubMed PMC
Eden E., Navon R., Steinfeld I., Lipson D., Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10:48. PubMed PMC
Gillet L.C., Navarro P., Tate S., Röst H., Selevsek N., Reiter L., Bonner R., Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell Proteom. 2012;11 O111.016717. PubMed PMC
Huang D.W., Sherman B.T., Lempicki R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. PubMed PMC
Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. PubMed
Huang Q., Yang L., Luo J., Guo L., Wang Z., Yang X., Jin W., Fang Y., Ye J., Shan B., Zhang Y. SWATH enables precise label-free quantification on proteome scale. Proteomics. 2015;15:1215–1223. PubMed
Inman G.J., Nicolás F.J., Callahan J.F., Harling J.D., Gaster L.M., Reith A.D., Laping N.J., Hill C.S. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 2002;62:65–74. PubMed
Kammers K., Cole R.N., Tiengwe C., Ruczinski I. Detecting significant changes in protein abundance. EuPA Open Proteom. 2015;7:11–19. PubMed PMC
Krämer A., Green J., Pollard J., Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523–530. PubMed PMC
Liang G., Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell. 2013;13:149–159. PubMed PMC
Liao H., Liu X.J., Blank J.L., Bouck D.C., Bernard H., Garcia K., Lightcap E.S. Quantitative proteomic analysis of cellular protein modulation upon inhibition of the NEDD8-activating enzyme by MLN4924. Mol. Cell Proteom. 2011;10 M111.009183. PubMed PMC
Ludwig C., Gillet L., Rosenberger G., Amon S., Collins B.C., Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol. Syst. Biol. 2018;14:e8126. PubMed PMC
McDonough H., Charles P.C., Hilliard E.G., Qian S.B., Min J.N., Portbury A., Cyr D.M., Patterson C. Stress-dependent Daxx-CHIP interaction suppresses the p53 apoptotic program. J. Biol. Chem. 2009;284:20649–20659. PubMed PMC
Meacham G.C., Patterson C., Zhang W., Younger J.M., Cyr D.M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol. 2001;3:100–105. PubMed
Narayan V., Pion E., Landré V., Müller P., Ball K.L. Docking-dependent ubiquitination of the interferon regulatory factor-1 tumor suppressor protein by the ubiquitin ligase CHIP. J. Biol. Chem. 2011;286:607–619. PubMed PMC
Nonlinear_Dynamics P-values, false discovery rate (FDR) and q-values [Online]. WaterTM. https://www.nonlinear.com/progenesis/qi-for-proteomics/v1.0/faq/pq-values.aspx
Park T.I., Monzo H., Mee E.W., Bergin P.S., Teoh H.H., Montgomery J.M., Faull R.L., Curtis M.A., Dragunow M. Adult human brain neural progenitor cells (NPCs) and fibroblast-like cells have similar properties in vitro but only NPCs differentiate into neurons. PLoS One. 2012;7:e37742. PubMed PMC
Rosenberger G., Koh C.C., Guo T., Röst H.L., Kouvonen P., Collins B.C., Heusel M., Liu Y., Caron E., Vichalkovski A., et al. A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci. Data. 2014;1:140031. PubMed PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. Nih image to imagej: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Shi Y., Kirwan P., Livesey F.J. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat. Protoc. 2012;7:1836–1846. PubMed
Shi Y., Kirwan P., Smith J., Robinson H.P., Livesey F.J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 2012;15:477–486. S1. PubMed PMC
Supek F., Bošnjak M., Škunca N., Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800. PubMed PMC
Tawo R., Pokrzywa W., Kevei É., Akyuz M.E., Balaji V., Adrian S., Höhfeld J., Hoppe T. The ubiquitin ligase CHIP integrates proteostasis and aging by regulation of insulin receptor turnover. Cell. 2017;169:470–482.e13. PubMed PMC
Vitale A.M., Matigian N.A., Ravishankar S., Bellette B., Wood S.A., Wolvetang E.J., Mackay-Sim A. Variability in the generation of induced pluripotent stem cells: importance for disease modeling. Stem Cells Transl. Med. 2012;1:641–650. PubMed PMC
Wang L., Liu Y.T., Hao R., Chen L., Chang Z., Wang H.R., Wang Z.X., Wu J.W. Molecular mechanism of the negative regulation of Smad1/5 protein by carboxyl terminus of Hsc70-interacting protein (CHIP) J. Biol. Chem. 2011;286:15883–15894. PubMed PMC
Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. PubMed
Yu F., Qiu F., Meza J. In: Proteomic Profiling and Analytical Chemistry. Second ed. Ciborowski P., Silberring J., editors. The Crossroads; 2016. Design and statistical analysis of mass-spectrometry-based quantitative proteomics data.
Zhang_Lab Guide design resources [Online] https://zlab.bio/guide-design-resources