Implementation of quantum compression on IBM quantum computers
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2/0136/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
MUNI/G/1596/2019
Masarykova Univerzita
PubMed
35393490
PubMed Central
PMC8991190
DOI
10.1038/s41598-022-09881-8
PII: 10.1038/s41598-022-09881-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Advances in development of quantum computing processors brought ample opportunities to test the performance of various quantum algorithms with practical implementations. In this paper we report on implementations of quantum compression algorithm that can efficiently compress unknown quantum information. We restricted ourselves to compression of three pure qubits into two qubits, as the complexity of even such a simple implementation is barely within the reach of today's quantum processors. We implemented the algorithm on IBM quantum processors with two different topological layouts-a fully connected triangle processor and a partially connected line processor. It turns out that the incomplete connectivity of the line processor affects the performance only minimally. On the other hand, it turns out that the transpilation, i.e. compilation of the circuit into gates physically available to the quantum processor, crucially influences the result. We also have seen that the compression followed by immediate decompression is, even for such a simple case, on the edge or even beyond the capabilities of currently available quantum processors.
Institute of Computer Science Masaryk University Šumavská 416 602 00 Brno Czech Republic
Institute of Physics Slovak Academy of Sciences Dúbravská cesta 9 841 04 Bratislava Slovak Republic
Zobrazit více v PubMed
Benioff P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 1980;22:563–591. doi: 10.1007/BF01011339. DOI
Manin Y. Computable and Uncomputable. Sovetskoye Radio; 1980.
Feynman RP. Simulating physics with computers. Int. J. Theor. Phys. 1982;21:467–488. doi: 10.1007/BF02650179. DOI
Nielsen MA, Chuang IL. Quantum Computation and Quantum Information. Cambridge University Press; 2000.
Cheng H-P, Deumens E, Freericks JK, Li C, Sanders BA. Application of quantum computing to biochemical systems: A look to the future. Front. Chem. 2020;8:1066. doi: 10.3389/fchem.2020.587143. PubMed DOI PMC
Cao Y, et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 2019;119:10856–10915. doi: 10.1021/acs.chemrev.8b00803. PubMed DOI
Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 1997;26:1484–1509. doi: 10.1137/S0097539795293172. DOI
Grover, L. K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212–219 (Association for Computing Machinery, 1996). 10.1145/237814.237866
Long GL. Grover algorithm with zero theoretical failure rate. Phys. Rev. A. 2001;64:022307. doi: 10.1103/PhysRevA.64.022307. DOI
Toyama FM, van Dijk W, Nogami Y. Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters. Quantum Inf. Process. 2013;12:1897–1914. doi: 10.1007/s11128-012-0498-0. DOI
Reitzner, D., Nagaj, D. & BuŽek, V. Quantum walks. Acta Phys. Slov. Rev. Tutor.61. 10.2478/v10155-011-0006-6 (2011).
Bennett CH, et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 1993;70:1895–1899. doi: 10.1103/PhysRevLett.70.1895. PubMed DOI
Bennett CH, Wiesner SJ. Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 1992;69:2881–2884. doi: 10.1103/PhysRevLett.69.2881. PubMed DOI
Bäuml S, Winter A, Yang D. Every entangled state provides an advantage in classical communication. J. Math. Phys. 2019;60:072201. doi: 10.1063/1.5091856. DOI
Bennett CH, Brassard G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014;560:7–11. doi: 10.1016/j.tcs.2014.05.025. DOI
Pirandola S, et al. Advances in quantum cryptography. Adv. Opt. Photon. 2020;12:1012. doi: 10.1364/aop.361502. DOI
Long GL, Liu XS. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 2002;65:032302. doi: 10.1103/PhysRevA.65.032302. DOI
Pan D, Li K, Ruan D, Ng SX, Hanzo L. Single-photon-memory two-step quantum secure direct communication relying on Einstein–Podolsky–Rosen pairs. IEEE Access. 2020;8:121146–121161. doi: 10.1109/ACCESS.2020.3006136. DOI
Blatt R, Roos CF. Quantum simulations with trapped ions. Nat. Phys. 2012;8:277–284. doi: 10.1038/nphys2252. DOI
Bruzewicz CD, Chiaverini J, McConnell R, Sage JM. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 2019;6:021314. doi: 10.1063/1.5088164. DOI
Huang H-L, Wu D, Fan D, Zhu X. Superconducting quantum computing: A review. Sci. China Inf. Sci. 2020;63:180501. doi: 10.1007/s11432-020-2881-9. DOI
Monz T, et al. Realization of a scalable Shor algorithm. Science. 2016;351:1068–1070. doi: 10.1126/science.aad9480. PubMed DOI
Figgatt, C. et al. Complete 3-qubit Grover search on a programmable quantum computer. Nat. Commun.8. 10.1038/s41467-017-01904-7 (2017). PubMed PMC
Long G, et al. Experimental NMR realization of a generalized quantum search algorithm. Phys. Lett. A. 2001;286:121–126. doi: 10.1016/S0375-9601(01)00416-9. DOI
IBM Quantum (2021). https://quantum-computing.ibm.com/
Rundle RP, Mills PW, Tilma T, Samson JH, Everitt MJ. Simple procedure for phase-space measurement and entanglement validation. Phys. Rev. A. 2017;96:022117. doi: 10.1103/PhysRevA.96.022117. DOI
Huffman E, Mizel A. Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A. 2017;95:032131. doi: 10.1103/PhysRevA.95.032131. DOI
Deffner S. Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon. 2017;3:e00444. doi: 10.1016/j.heliyon.2017.e00444. PubMed DOI PMC
Huang H-L, et al. Homomorphic encryption experiments on IBM’s cloud quantum computing platform. Front. Phys. 2016;12:120305. doi: 10.1007/s11467-016-0643-9. DOI
Wootton JR. Demonstrating non-abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2017;2:015006. doi: 10.1088/2058-9565/aa5c73. DOI
Fedortchenko, S. A quantum teleportation experiment for undergraduate students. arXiv:1607.02398 (2016).
Li R, Alvarez-Rodriguez U, Lamata L, Solano E. Approximate quantum adders with genetic algorithms: An IBM quantum experience. Quantum Meas. Quantum Metrol. 2017;4:1–7. doi: 10.1515/qmetro-2017-0001. DOI
Hebenstreit M, Alsina D, Latorre JI, Kraus B. Compressed quantum computation using a remote five-qubit quantum computer. Phys. Rev. A. 2017;95:052339. doi: 10.1103/PhysRevA.95.052339. DOI
Alsina D, Latorre JI. Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A. 2016;94:012314. doi: 10.1103/PhysRevA.94.012314. DOI
Devitt SJ. Performing quantum computing experiments in the cloud. Phys. Rev. A. 2016;94:032329. doi: 10.1103/PhysRevA.94.032329. DOI
Mandviwalla, A., Ohshiro, K. & Ji, B. Implementing Grover’s algorithm on the IBM quantum computers. In 2018 IEEE International Conference on Big Data (Big Data), pp. 2531–2537. 10.1109/BigData.2018.8622457 (2018).
Acasiete F, Agostini FP, Moqadam JK, Portugal R. Implementation of quantum walks on IBM quantum computers. Quantum Inf. Process. 2020;19:426. doi: 10.1007/s11128-020-02938-5. DOI
Zhang K, Rao P, Yu K, Lim H, Korepin V. Implementation of efficient quantum search algorithms on NISQ computers. Quantum Inf. Process. 2021;20:233. doi: 10.1007/s11128-021-03165-2. DOI
Bharti, K. et al. Noisy intermediate-scale quantum (NISQ) algorithms. arXiv:2101.08448 (2021).
Oliveira, A. N., de Oliveira, E. V. B., Santos, A. C. & Villas-Bôas, C. J. Quantum algorithms in IBMQ experience: Deutsch–Jozsa algorithm. arXiv:2109.07910 (2021).
Peruzzo A, et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014;5:4213. doi: 10.1038/ncomms5213. PubMed DOI PMC
Wei S, Li H, Long G. A full quantum eigensolver for quantum chemistry simulations. Research. 2020;2020:1486935. doi: 10.34133/2020/1486935. PubMed DOI PMC
Bharti K, et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022;94:015004. doi: 10.1103/RevModPhys.94.015004. DOI
Plesch M, Bužek V. Efficient compression of quantum information. Phys. Rev. A. 2010;81:032317. doi: 10.1103/PhysRevA.81.032317. DOI
Rozema LA, Mahler DH, Hayat A, Turner PS, Steinberg AM. Quantum data compression of a qubit ensemble. Phys. Rev. Lett. 2014;113:160504. doi: 10.1103/PhysRevLett.113.160504. PubMed DOI
Yang Y, Chiribella G, Ebler D. Efficient quantum compression for ensembles of identically prepared mixed states. Phys. Rev. Lett. 2016;116:080501. doi: 10.1103/PhysRevLett.116.080501. PubMed DOI
Yang Y, Chiribella G, Hayashi M. Optimal compression for identically prepared qubit states. Phys. Rev. Lett. 2016;117:090502. doi: 10.1103/PhysRevLett.117.090502. PubMed DOI
Huang C-J, et al. Realization of a quantum autoencoder for lossless compression of quantum data. Phys. Rev. A. 2020;102:032412. doi: 10.1103/PhysRevA.102.032412. DOI
Bai G, Yang Y, Chiribella G. Quantum compression of tensor network states. N. J. Phys. 2020;22:043015. doi: 10.1088/1367-2630/ab7a34. DOI
Fan C-R, Lu B, Feng X-T, Gao W-C, Wang C. Efficient multi-qubit quantum data compression. Quantum Eng. 2021;3:e67. doi: 10.1002/que2.67. DOI
Park JL. The concept of transition in quantum mechanics. Found. Phys. 1970;1:23–33. doi: 10.1007/BF00708652. DOI
Wootters WK, Zurek WH. A single quantum cannot be cloned. Nature. 1982;299:802–803. doi: 10.1038/299802a0. DOI
Dieks D. Communication by EPR devices. Phys. Lett. A. 1982;92:271–272. doi: 10.1016/0375-9601(82)90084-6. DOI
Holevo AS. Statistical Structure of Quantum Theory. Springer; 2001.
Qiskit: Open Source Quantum Development (2021). https://qiskit.org/
Qiskit: Transpiler documentation (2021). https://qiskit.org/documentation/apidoc/transpiler.html