Differential immunostaining patterns of transient receptor potential (TRP) ion channels in the rat nodose ganglion

. 2022 Aug ; 241 (2) : 230-244. [epub] 20220409

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35396708

Grantová podpora
Fulbright Scholarship from the Fulbright Commission (HK)
Case Western Reserve University
Czech Academy of Sciences
Czech Science Foundation

Vagal afferents regulate numerous physiological functions including arterial blood pressure, heart rate, breathing, and nociception. Cell bodies of vagal afferents reside in the inferior vagal (nodose) ganglia and their stimulation by various means is being considered as a way to regulate cardiorespiratory responses and control pain sensations. Stimulation of the nodose by exposure to infrared light is recently being considered as a precise way to elicit responses. These responses would likely involve the activity of temperature-sensitive membrane-bound channels. While papers have been published to track the expression of these transient receptor potential ion channels (TRPs), further studies are warranted to determine the in situ expression of the endogenous TRP proteins in the nodose ganglia to fully understand their pattern of expression, subcellular locations, and functions in this animal model. TRP ion channels are a superfamily of Na+ /Ca2+ -channels whose members are temperature- and/or mechano-sensitive and therefore represent a potential set of proteins that will be activated directly or indirectly by infrared light. Here, we report the spatial localization of six TRP channels, TRPV1, TRPV4, TRPM3, TRPM8, TRPA1, and TRPC1, from nodose ganglia taken from juvenile male Sprague-Dawley rats. The channels were detected using immunohistology with fluorescent tags on cryosections and imaged using confocal microscopy. All six TRP channels were detected with different levels of intensity in neuronal cell bodies and some were also detected in axonal fibers and blood vessels. The TRP receptors differed in their prevalence, in their patterns of expression, and in subcellular expression/localization. More specifically, TRPV1, TRPV4, TRPA1, TRPM8, TRPC1, and TRPM3 were found in vagal afferent cell bodies with a wide range of immunostaining intensity from neuron to neuron. Immunostaining for TRPV1, TRPV4, and TRPA1 appeared as fine particles scattered throughout the cytoplasm of the cell body. Intense TRPV1 immunostaining was also evident in a subset of axonal fibers. TRPM8 and TRPC1 were expressed in courser particles suggesting different subcellular compartments than for TRPV1. The localization of TRPM3 differed markedly from the other TRP channels with an immunostaining pattern that was localized to the periphery of a subset of cell bodies, whereas a scattering or no immunostaining was detected within the bulk of the cytoplasm. TRPV4 and TRPC1 were also expressed on the walls of blood vessels. The finding that all six TRP channels (representing four subfamilies) were present in the nodose ganglia provides the basis for studies designed to understand the roles of these channels in sensory transmission within vagal afferent fibers and in the responses elicited by exposure of nodose ganglia to infrared light and other stimuli. Depending on the location and functionality of the TRP channels, they may regulate the flux of Na+ /Ca2+ -across the membranes of cell bodies and axons of sensory afferents, efferent (motor) fibers coursing through the ganglia, and in vascular smooth muscle.

Zobrazit více v PubMed

Alonso‐Carbajo, L. , Kecskes, M. , Jacobs, G. , Pironet, A. , Syam, N. , Talavera, K. et al. (2017) Muscling in on TRP channels in vascular smooth muscle cells cardiomyocytes. Cell Calcium, 66, 48–61. 10.1016/j.ceca.2017.06.004 PubMed DOI

Baker, C. (2005) The embryology of vagal sensory neurons. In: Undem, B.J. & Weinreich, D. (Eds.) Advances in neurobiology. Boca Raton, FL: CRC.

Baker, C.V.H. & Bronner‐Fraser, M. (2001) Vertebrate cranial placodes I. Embryonic induction. Developmental Biology, 232, 1–61. 10.1006/dbio.2001.0156 PubMed DOI

Benemei, S. , Patacchini, R. , Trevisani, M. & Geppetti, P. (2015) TRP channels. Current Opinion in Pharmacology, 22, 18–23. 10.1016/j.coph.2015.02.006 PubMed DOI

Ben‐Menachem, E. (2012) Neurostimulation‐past, present, and beyond. Epilepsy Currents, 12(5), 188–191. 10.5698/1535-7511-12.5.188 PubMed DOI PMC

Berrout, J. , Jin, M. , Mamenko, M. , Zaika, O. , Pochynyuk, O. & O’Neil, R.G. (2012) Function of transient receptor potential cation channel subfamily V member 4 (TRPV4) as a mechanical transducer in flow‐sensitive segments of renal collecting duct system. Journal of Biological Chemistry, 287(12), 8782–8791. 10.1074/jbc.M111.308411 PubMed DOI PMC

Bezzerides, V.J. , Ramsey, I.S. , Kotecha, S. , Greka, A. & Clapham, D.E. (2004) Rapid vesicular translocation and insertion of TRP channels. Nature Cell Biology, 6, 709–720. 10.1038/ncb1150 PubMed DOI

Bidaux, G. , Borowiec, A.‐S. , Gordienko, D. , Beck, B. , Shapovalov, G.G. , Lemonnier, L. et al. (2015) Epidermal TRPM8 channel isoform controls the balance between keratinocyte proliferation and differentiation in a cold‐dependent manner. Proceedings of the National Academy of Sciences of the USA, 112(26), E3345–E3354. 10.1073/pnas.1423357112 PubMed DOI PMC

Bidaux, G. , Gordienko, D. , Shapovalov, G. , Farfariello, V. , Borowiec, A.‐S. , Iamshanova, O. et al. (1865) 4TM‐TRPM8 channels are new gatekeepers of the ER‐mitochondria Ca2+ transfer. Biochimica Et Biophysica Acta (BBA) – Molecular Cell Research, 981–994, 2018. 10.1016/j.bbamcr.2018.04.007 PubMed DOI

Boisseau, S. , Kunert‐Keil, C. , Lucke, S. & Bouron, A. (2009) Heterogeneous distribution of TRPC proteins in the embryonic cortex. Histochemistry and Cell Biology, 131, 355–363. 10.1007/s00418-008-0532-6 PubMed DOI

Castillo, K. , Diaz‐Franulic, I. , Canan, J. , Gonzalez‐Nilo, F. & Latorre, R. (2018) Thermally activated TRP channels: molecular sensors for temperature detection. Physical Biology, 15, 021001. 10.1088/1478-3975/aa9a6f PubMed DOI

Cavanaugh, D.J. , Chesler, A.T. , Jackson, A.C. , Sigal, Y.M. , Yamanaka, H. , Grant, R. et al. (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. Journal of Neuroscience, 31, 5067–5077. 10.1523/JNEUROSCI.6451-10.2011 PubMed DOI PMC

Cayce, J.M. , Wells, J.D. , Malphrus, J.D. , Kao, C. , Thomsen, S. , Tulipan, N.B. et al. (2015) Infrared neural stimulation of human spinal nerve roots in vivo. Neurophotonics, 2, 015007. 10.1117/1.NPh.2.1.015007 PubMed DOI PMC

Chen, H.‐C. , Wang, C. , Shih, C. , Chueh, S. , Liu, S. , Chen, H. et al. (2015) TRPC1 is required for survival and proliferation of cochlear spiral ganglion stem/progenitor cells. International Journal of Pediatric Otorhinolaryngology, 79, 2290–2294. 10.1016/j.ijporl.2015.10.027 PubMed DOI

Conklin, D.J. , Guo, Y. , Nystoriak, M.A. , Jagatheesan, G. , Obal, D. , Kilfoil, P.J. et al. (2019) TRPA1 channel contributes to myocardial ischemia–reperfusion injury. American Journal of Physiology‐Heart and Circulatory Physiology, 316(4), H889–H899. 10.1152/ajpheart.00106.2018 PubMed DOI PMC

Dhaka, A. , Earley, T.J. , Watson, J. & Patapoutian, A. (2008) Visualizing cold spots: TRPM8‐expressing sensory neurons and their projections. Journal of Neuroscience, 28, 566–575. 10.1523/JNEUROSCI.3976-07.2008 PubMed DOI PMC

Duke, A.R. , Lu, H. , Jenkins, M.W. , Chiel, H.J. & Jansen, E.D. (2012) Spatial and temporal variability in response to hybrid electro‐optical stimulation. Journal of Neural Engineering, 9, 036003. 10.1088/1741-2560/9/3/036003 PubMed DOI PMC

Duke, A.R. , Jenkins, M.W. , Lu, H. , McManus, J.M. , Chiel, H.J. & Jansen, E.D. (2013) Transient and selective suppression of neural activity with infrared light. Scientific Reports, 3, 2600. 10.1038/srep02600 PubMed DOI PMC

Earley, S. (2010) Vanilloid and melastatin transient receptor potential channels in vascular smooth muscle. Microcirculation, 17, 237–249. 10.1111/j.1549-8719.2010.00026.x PubMed DOI PMC

Elg, S. , Marmigere, F. , Mattsson, J.P. & Ernfors, P. (2007) Cellular subtype distribution and developmental regulation of TRPC channel members in the mouse dorsal root ganglion. The Journal of Comparative Neurology, 503, 35–46. 10.1002/cne.21351 PubMed DOI

Elokely, K. , Velisetty, P. , Delemotte, L. , Palovcak, E. , Klein, M.L. , Rohacs, T. et al. (2016) Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin. Proceedings of the National Academy of Sciences of the USA, 113, E137–E145. 10.1073/pnas.1517288113 PubMed DOI PMC

Ferrandiz‐Huertas, C. , Mathivanan, S. , Wolf, C. , Devesa, I. & Ferrer‐Montiel, A. (2014) Trafficking of ThermoTRP channels. Membranes, 4(3), 525–564. 10.3390/membranes4030525 PubMed DOI PMC

Ford, S.M. , Watanabe, M. & Jenkins, M.W. (2018) A review of optical pacing with infrared light. Journal of Neural Engineering, 15, 011001. 10.1088/1741-2552/aa795f PubMed DOI PMC

Fujita, M. , Sato, T. , Yajima, T. , Masaki, E. & Ichikawa, H. (2017) TRPC1, TRPC3, and TRPC4 in rat orofacial structures. Cells Tissues Organs, 204, 293–303. 10.1159/000477665 PubMed DOI

Gasperini, R. , Choi‐Lundberg, D. , Thompson, M.J. , Mitchell, C.B. & Foa, L. (2009) Homer regulates calcium signalling in growth cone turning. Neural Development, 4, 29. 10.1186/1749-8104-4-29 PubMed DOI PMC

Gees, M. , Colsoul, B. & Nilius, B. (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harbor Perspectives in Biology, 2, a003962. 10.1101/cshperspect.a003962 PubMed DOI PMC

Gerritsen, R.J.S. & Band, G.P.H. (2018) Breath of life: The respiratory vagal stimulation model of contemplative activity. Frontiers in Human Neuroscience, 12, 397. 10.3389/fnhum.2018.00397 PubMed DOI PMC

Glazebrook, P.A. , Schilling, W.P. & Kunze, D.L. (2005) TRPC channels as signal transducers. Pflügers Archiv – European Journal of Physiology, 451, 125–130. 10.1007/s00424-005-1468-5 PubMed DOI

Goswami, C. , Rademacher, N. , Smalla, K.‐H. , Kalscheuer, V. , Ropers, H.‐H. , Gundelfinger, E.D. et al. (2010) TRPV1 acts as a synaptic protein and regulates vesicle recycling. Journal of Cell Science, 123, 2045–2057. 10.1242/jcs.065144 PubMed DOI

Hanani, M. (2010) Satellite glial cells: More than just rings around the neuron. Neuron Glia Biology, 6, 1–2. PubMed

Hanani, M. (2010) Satellite glial cells in sympathetic and parasympathetic ganglia: In search of function. Brain Research Reviews, 64, 304–327. 10.1016/j.brainresrev.2010.04.009 PubMed DOI

Hoffstaetter, L.J. , Bagriantsev, S.N. & Gracheva, E.O. (2018) TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflügers Archiv – European Journal of Physiology, 470, 745–759. 10.1007/s00424-018-2120-5 PubMed DOI PMC

Holzer, P. (2008) The pharmacological challenge to tame the transient receptor potential vanilloid‐1 (TRPV1) nocisensor. British Journal of Pharmacology, 155, 1145–1162. 10.1038/bjp.2008.351 PubMed DOI PMC

Hondoh, A. , Ishida, Y. , Ugawa, S. , Ueda, T. , Shibata, Y. , Yamada, T. et al. (2010) Distinct expression of cold receptors (TRPM8 and TRPA1) in the rat nodose‐petrosal ganglion complex. Brain Research, 1319, 60–69. 10.1016/j.brainres.2010.01.016 PubMed DOI

Jardín, I. , López, J.J. , Diez, R. , Sánchez‐Collado, J. , Cantonero, C. , Albarrán, L. et al. (2017) TRPs in pain sensation. Frontiers in Physiology, 8, 392. doi: 10.3389/fphys.2017.00392 PubMed DOI PMC

Jeon, S. & Caterina, M.J. (2018) Molecular basis of peripheral innocuous warmth sensitivity. In: Handbook of clinical neurology, pp. 69–82. Amsterdam, Netherlands: Elsevier; PubMed

Katz, D.M. , Erb, M. , Lillis, R. & Neet, K. (1990) Trophic regulation of nodose ganglion cell development: evidence for an expanded role of nerve growth factor during embryogenesis in the rat. Experimental Neurology, 110, 1–10. 10.1016/0014-4886(90)90046-U PubMed DOI

Kotagal, P. (2011) Neurostimulation: Vagus nerve stimulation and beyond. Seminars in Pediatric Neurology, 18, 186–194. 10.1016/j.spen.2011.06.005 PubMed DOI

Lacolley, P. , Owen, J.R. , Sandock, K. , Lewis, T.H.J. , Bates, J.N. , Robertson, T.P. et al. (2006) Occipital artery injections of 5‐HT may directly activate the cell bodies of vagal and glossopharyngeal afferent cell bodies in the rat. Neuroscience, 143, 289–308. 10.1016/j.neuroscience.2006.08.047 PubMed DOI

Lee, S.W. , Kulkarni, K. , Annoni, E.M. , Libbus, I. , KenKnight, B.H. & Tolkacheva, E.G. (2018) Stochastic vagus nerve stimulation affects acute heart rate dynamics in rats. PLoS One, 13, e0194910. 10.1371/journal.pone.0194910 PubMed DOI PMC

Lindsay, R.M. , Thoenen, H. & Barde, Y.‐A. (1985) Placode and neural crest‐derived sensory neurons are responsive at early developmental stages to brain‐derived neurotrophic factor. Developmental Biology, 112, 319–328. 10.1016/0012-1606(85)90402-6 PubMed DOI

Lothet, E.H. , Kilgore, K.L. , Bhadra, N. , Bhadra, N. , Vrabec, T. , Wang, Y.T. et al. (2014) Alternating current and infrared produce an onset‐free reversible nerve block. Neurophotonics, 1, 011010. 10.1117/1.NPh.1.1.011010 PubMed DOI PMC

Lothet, E.H. , Shaw, K.M. , Lu, H. , Zhuo, J. , Wang, Y.T. , Gu, S. et al. (2017) Selective inhibition of small‐diameter axons using infrared light. Scientific Reports, 7, 3275. 10.1038/s41598-017-03374-9 PubMed DOI PMC

Mahieu, F. , Owsianik, G. , Verbert, L. , Janssens, A. , De Smedt, H. , Nilius, B. et al. (2007) TRPM8‐independent menthol‐induced Ca2+ release from endoplasmic reticulum and Golgi. Journal of Biological Chemistry, 282, 3325–3336. 10.1074/jbc.M605213200 PubMed DOI

Martínez‐García, M.C. , Martínez, T. , Pañeda, C. , Gallego, P. , Jimenez, A.I. & Merayo, J. (2013) Differential expression and localization of transient receptor potential vanilloid 1 in rabbit and human eyes. Histology and Histopathology, 28, 1507–1516. 10.14670/HH-28.1507 PubMed DOI

Mazzone, S.B. & Undem, B.J. (2016) Vagal afferent innervation of the airways in health and disease. Physiological Reviews, 96, 975–1024. 10.1152/physrev.00039.2015 PubMed DOI PMC

Meng, Q. , Fang, P. , Hu, Z. , Ling, Y. & Liu, H. (2015) Mechanotransduction of trigeminal ganglion neurons innervating inner walls of rat anterior eye chambers. American Journal of Physiology‐Cell Physiology, 309, C1–C10. 10.1152/ajpcell.00028.2015 PubMed DOI

Menigoz, A. & Boudes, M. (2011) The expression pattern of TRPV1 in brain. Journal of Neuroscience, 31, 13025–13027. 10.1523/JNEUROSCI.2589-11.2011 PubMed DOI PMC

Premkumar, L.S. Methods used for studying TRP channel functions in sensory neurons [Online]. http://www.ncbi.nlm.nih.gov/pubmed/22593954 PubMed

Ragozzino, F.J. , Arnold, R.A. , Fenwick, A.J. , Riley, T.P. , Lindberg, J.E.M. , Peterson, B.A. et al. (2021) TRPM3 expression and control of glutamate release from primary vagal afferent neurons. Journal of Neurophysiology, 125, 199–210. 10.1152/jn.00229.2020 PubMed DOI PMC

Ruggiero, D.A. , Mtui, E.P. , Otake, K. & Anwar, M. (1996) Central and primary visceral afferents to nucleus tractus solitarii may generate nitric oxide as a membrane‐permeant neuronal messenger. The Journal of Comparative Neurology, 364, 51–67. 10.1002/(SICI)1096-9861(19960101)364:1<51:AID-CNE5>3.0.CO;2-R PubMed DOI

Sand, C.A. , Grant, A.D. & Nandi, M. (2015) Vascular expression of transient receptor potential vanilloid 1 (TRPV1). Journal of Histochemistry & Cytochemistry, 63(6), 449–453. 10.1369/0022155415581014 PubMed DOI PMC

Shin, S.M. , Itson‐Zoske, B. , Cai, Y. , Qiu, C. , Pan, B. , Stucky, C.L. et al. (2020) Satellite glial cells in sensory ganglia express functional transient receptor potential ankyrin 1 that is sensitized in neuropathic and inflammatory pain. Molecular Pain, 16, 1–19. 10.1177/1744806920925425 PubMed DOI PMC

Staaf, S. , Franck, M.C.M. , Marmigère, F. , Mattsson, J.P. & Ernfors, P. (2010) Dynamic expression of the TRPM subgroup of ion channels in developing mouse sensory neurons. Gene Expression Patterns, 10, 65–74. 10.1016/j.gep.2009.10.003 PubMed DOI

Sun, Y. , Zhang, H. , Selvaraj, S. , Sukumaran, P. , Lei, S. , Birnbaumer, L. et al. (2017) Inhibition of L‐type Ca2+ channels by TRPC1‐STIM1 complex is essential for the protection of dopaminergic neurons. The Journal of Neuroscience, 37(12), 3364–3377. 10.1523/JNEUROSCI.3010-16.2017 PubMed DOI PMC

Takumida, M. & Anniko, M. (2009) Expression of canonical transient receptor potential channel (TRPC) 1–7 in the mouse inner ear. Acta Oto‐Laryngologica, 129, 1351–1358. 10.3109/00016480902798350 PubMed DOI

Thiel, G. , Rubil, S. , Lesch, A. , Guethlein, L.A. & Rössler, O.G. (2017) Transient receptor potential TRPM3 channels: Pharmacology, signaling, and biological functions. Pharmacological Research, 124, 92–99. 10.1016/j.phrs.2017.07.014 PubMed DOI

Throckmorton, G. , Cayce, J. , Ricks, Z. , Adams, W.R. , Jansen, E.D. & Mahadevan‐Jansen, A. (2021) Identifying optimal parameters for infrared neural stimulation in the peripheral nervous system. Neurophotonics, 8, 015012. 10.1117/1.NPh.8.1.015012 PubMed DOI PMC

Tolstykh, G.P. , Ibey, B.L. , Sedelnikova, A.V. , Valdez, C.M. , Cantu, J.C. & Echchgadda, I. Infrared laser‐induced fast thermal gradient affects the excitability of primary hippocampal neurons. In: Optical interactions with tissue and cells XXXI, edited by Ibey, B.L. & Linz, N. . SPIE conference abstract book, p. 34.

Tominaga, M. , Caterina, M.J. , Malmberg, A.B. , Rosen, T.A. , Gilbert, H. , Skinner, K. et al. (1998) The cloned capsaicin receptor integrates multiple pain‐producing stimuli. Neuron, 21, 531–543. 10.1016/S0896-6273(00)80564-4 PubMed DOI

Toro, C.A. , Arias, L.A. & Brauchi, S. (2011) Sub‐cellular distribution and translocation of TRP channels. Current Pharmaceutical Biotechnology, 12, 12–23. 10.2174/138920111793937899 PubMed DOI

Trancikova, A. , Kovacova, E. , Ru, F. , Varga, K. , Brozmanova, M. , Tatar, M. et al. (2018) Distinct expression of phenotypic markers in placodes‐ and neural crest‐derived afferent neurons innervating the rat stomach. Digestive Diseases and Sciences, 63, 383–394. 10.1007/s10620-017-4883-5 PubMed DOI

Tsuzuki, K. , Xing, H. , Ling, J. & Gu, J.G. (2004) Menthol‐induced Ca2+ release from presynaptic Ca2+ stores potentiates sensory synaptic transmission. Journal of Neuroscience, 24, 762–771. 10.1523/JNEUROSCI.4658-03.2004 PubMed DOI PMC

Venkatachalam, K. & Montell, C. (2007) TRP channels. Annual Review of Biochemistry, 76(1), 387–417. 10.1146/annurev.biochem.75.103004.142819 PubMed DOI PMC

Vriens, J. , Owsianik, G. , Hofmann, T. , Philipp, S.E. , Stab, J. , Chen, X. , Benoit, M. , Xue, F. , Janssens, A. , Kerselaers, S. , Oberwinkler, J. , Vennekens, R. , Gudermann, T. , Nilius, B. & Voets, T. TRPM3 Is a nociceptor channel involved in the detection of noxious heat. Neuron, 70(3), 482–494 PubMed

Wani, A. , Trevino, K. , Marnell, P. & Husain, M.M. (2013) Advances in brain stimulation for depression. Annals of Clinical Psychiatry, 25(3), 217–224. PubMed

Wells, J. , Kao, C. , Jansen, E.D. , Konrad, P. & Mahadevan‐Jansen, A. (2005) Application of infrared light for in vivo neural stimulation. Journal of Biomedical Optics, 10, 064003.10.1117/1.2121772 PubMed DOI

Wolfrum, C. , Kiehlmann, E. & Pelczar, P. (2018) TRPC1 regulates brown adipose tissue activity in a PPARγ‐dependent manner. American Journal of Physiology‐Endocrinology and Metabolism, 315, E825–E832. 10.1152/ajpendo.00170.2017 PubMed DOI

Xie, M.‐X. , Cao, X.‐Y. , Zeng, W.‐A. , Lai, R.‐C. , Guo, L. , Wang, J.‐C. et al. (2021) ATF4 selectively regulates heat nociception and contributes to kinesin‐mediated TRPM3 trafficking. Nature Communications, 12(1), 1401. 10.1038/s41467-021-21,731-1 PubMed DOI PMC

Yajima, T. , Sato, T. , Shimazaki, K. & Ichikawa, H. (2019) Transient receptor potential melastatin‐3 in the rat sensory ganglia of the trigeminal, glossopharyngeal and vagus nerves. Journal of Chemical Neuroanatomy, 96, 116–125. 10.1016/j.jchemneu.2019.01.005 PubMed DOI

Yao, X. & Garland, C.J. (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circulation Research, 97, 853–863. 10.1161/01.RES.0000187473.85419.3e PubMed DOI

Yao, J. , Liu, B. & Qin, F. Rapid temperature jump by infrared diode laser irradiation for patch‐clamp studies. Biophysical Journal, 96(9), P3611–3619. PubMed PMC

Zhang, L. , Jones, S. , Brody, K. , Costa, M. & Brookes, S.J.H. (2004) Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. American Journal of Physiology. Gastrointestinal and Liver Physiology, 286, G983–G991. 10.1152/ajpgi.00441.2003 PubMed DOI

Zhuo, H. (1997) Neurochemistry of the nodose ganglion. Progress in Neurobiology, 52, 79–107. 10.1016/S0301-0082(97)00003-8 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...