Development of a low-seroprevalence, αvβ6 integrin-selective virotherapy based on human adenovirus type 10
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
Grant support
29104
Cancer Research UK - United Kingdom
MR/R026424/1
Medical Research Council - United Kingdom
PubMed
35399606
PubMed Central
PMC8971729
DOI
10.1016/j.omto.2022.03.007
PII: S2372-7705(22)00049-3
Knihovny.cz E-resources
- Keywords
- adenovirus, low seroprevalence, oncolytic, structure, targeting, virotherapy, αvβ6 integrin,
- Publication type
- Journal Article MeSH
Oncolytic virotherapies (OV) hold immense clinical potential. OV based on human adenoviruses (HAdV) derived from HAdV with naturally low rates of pre-existing immunity will be beneficial for future clinical translation. We generated a low-seroprevalence HAdV-D10 serotype vector incorporating an αvβ6 integrin-selective peptide, A20, to target αvβ6-positive tumor cell types. HAdV-D10 has limited natural tropism. Structural and biological studies of HAdV-D10 knob protein highlighted low-affinity engagement with native adenoviral receptors CAR and sialic acid. HAdV-D10 fails to engage blood coagulation factor X, potentially eliminating "off-target" hepatic sequestration in vivo. We engineered an A20 peptide that selectively binds αvβ6 integrin into the DG loop of HAdV-D10 fiber knob. Assays in αvβ6+ cancer cell lines demonstrated significantly increased transduction mediated by αvβ6-targeted variants compared with controls, confirmed microscopically. HAdV-D10.A20 resisted neutralization by neutralizing HAdV-C5 sera. Systemic delivery of HAdV-D10.A20 resulted in significantly increased GFP expression in BT20 tumors. Replication-competent HAdV-D10.A20 demonstrated αvβ6 integrin-selective cell killing in vitro and in vivo. HAdV-D10 possesses characteristics of a promising virotherapy, combining low seroprevalence, weak receptor interactions, and reduced off-target uptake. Incorporation of an αvβ6 integrin-selective peptide resulted in HAdV-D10.A20, with significant potential for clinical translation.
Division of Cancer and Genetics School of Medicine Cardiff University Heath Park Cardiff CF14 4XN UK
Division of Molecular Biology Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
European Cancer Stem Cell Research Institute Cardiff University Cardiff CF24 4HQ UK
See more in PubMed
Ghebremedhin B. Human adenovirus: viral pathogen with increasing importance. Eur. J. Microbiol. Immunol. (Bp) 2014;4:26–33. PubMed PMC
Russell W.C. Adenoviruses: update on structure and function. J. Gen. Virol. 2009;90:1–20. PubMed
HAdV Working Group. http://hadvwg.gmu.edu/
Gaggar A., Shayakhmetov D.M., Lieber A. CD46 is a cellular receptor for group B adenoviruses. Nat. Med. 2003;9:1408–1412. PubMed
Wang H., Li Z., Liu Y., Persson J., Beyer I., Möller T., Koyuncu D., Drescher M.R., Strauss R., Zhang X.-B., et al. Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11, and 14. Nat. Med. 2011;17:96–104. PubMed PMC
Robinson C.M., Seto D., Jones M.S., Dyer D.W., Chodosh J. Molecular evolution of human species D adenoviruses. Infect. Genet. Evol. 2011;11:1208–1217. PubMed PMC
Baker A.T., Mundy R.M., Davies J.A., Rizkallah P.J., Parker A.L. Human adenovirus type 26 uses sialic acid–bearing glycans as a primary cell entry receptor. Sci. Adv. 2019;5:eaax3567. PubMed PMC
Arnberg N., Kidd A.H., Edlund K., Nilsson J., Pring-Akerblom P., Wadell G. Adenovirus type 37 binds to cell surface sialic acid through a charge-dependent interaction. Virology. 2002;302:33–43. PubMed
Persson B.D., John L., Rafie K., Strebl M., Frängsmyr L., Ballmann M.Z., Mindler K., Havenga M., Lemckert A., Stehle T., et al. Human species D adenovirus hexon capsid protein mediates cell entry through a direct interaction with CD46. Proc. Natl. Acad. Sci. U S A. 2021;118 e2020732118. PubMed PMC
Wold W.S.M., Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr. Gene Ther. 2013;13:421–433. PubMed PMC
Lemos de Matos A., Franco L.S., McFadden G. Oncolytic viruses and the immune system: the dynamic duo. Mol. Ther. Methods Clin. Dev. 2020;17:349–358. PubMed PMC
Wickham T.J., Mathias P., Cheresh D.A., Nemerow G.R. Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell. 1993;73:309–319. PubMed
Cohen C.J., Shieh J.T., Pickles R.J., Okegawa T., Hsieh J.T., Bergelson J.M. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc. Natl. Acad. Sci. U S A. 2001;98:15191–15196. PubMed PMC
Sachs M.D., Rauen K.A., Ramamurthy M., Dodson J.L., De Marzo A.M., Putzi M.J., Schoenberg M.P., Rodriguez R. Integrin alpha(v) and coxsackie adenovirus receptor expression in clinical bladder cancer. Urology. 2002;60:531–536. PubMed
Korn W.M., Macal M., Christian C., Lacher M.D., McMillan A., Rauen K.A., Warren R.S., Ferrell L. Expression of the coxsackievirus- and adenovirus receptor in gastrointestinal cancer correlates with tumor differentiation. Cancer Gene Ther. 2006;13:792–797. PubMed
Parker A.L., Waddington S.N., Nicol C.G., Shayakhmetov D.M., Buckley S.M., Denby L., Kemball-Cook G., Ni S., Lieber A., McVey J.H., et al. Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood. 2006;108:2554–2561. PubMed
Waddington S.N., McVey J.H., Bhella D., Parker A.L., Barker K., Atoda H., Pink R., Buckley S.M.K., Greig J.A., Denby L., et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell. 2008;132:397–409. PubMed
Kalyuzhniy O., Di Paolo N.C., Silvestry M., Hofherr S.E., Barry M.A., Stewart P.L., Shayakhmetov D.M. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc. Natl. Acad. Sci. U S A. 2008;105:5483–5488. PubMed PMC
Knowles M.R., Hohneker K.W., Zhou Z., Olsen J.C., Noah T.L., Hu P.C., Leigh M.W., Engelhardt J.F., Edwards L.J., Jones K.R. A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N. Engl. J. Med. 1995;333:823–831. PubMed
Kuriyama S., Tominaga K., Kikukawa M., Nakatani T., Tsujinoue H., Yamazaki M., Nagao S., Toyokawa Y., Mitoro A., Fukui H. Inhibitory effects of human sera on adenovirus-mediated gene transfer into rat liver. Anticancer Res. 1998;18:2345–2351. PubMed
Molnar-Kimber K.L., Sterman D.H., Chang M., Kang E.H., ElBash M., Lanuti M., Elshami A., Gelfand K., Wilson J.M., Kaiser L.R., et al. Impact of preexisting and induced humoral and cellular immune responses in an adenovirus-based gene therapy phase I clinical trial for localized mesothelioma. Hum. Gene Ther. 1998;9:2121–2133. PubMed
Vogels R., Zuijdgeest D., van Rijnsoever R., Hartkoorn E., Damen I., de Béthune M.-P., Kostense S., Penders G., Helmus N., Koudstaal W., et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J. Virol. 2003;77:8263–8271. PubMed PMC
Parker A.L., Waddington S.N., Buckley S.M.K., Custers J., Havenga M.J.E., van Rooijen N., Goudsmit J., McVey J.H., Nicklin S.A., Baker A.H. Effect of neutralizing sera on factor X-mediated adenovirus serotype 5 gene transfer. J. Virol. 2009;83:479–483. PubMed PMC
Chirmule N., Propert K., Magosin S., Qian Y., Qian R., Wilson J. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 1999;6:1574–1583. PubMed
Lynch J.P., Kajon A.E. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. Semin. Respir. Crit. Care Med. 2016;37:586–602. PubMed PMC
Uusi-Kerttula H., Davies J.A., Thompson J.M., Wongthida P., Evgin L., Shim K.G., Bradshaw A., Baker A.T., Rizkallah P.J., Jones R., et al. Ad5NULL-A20 - a tropism-modified, αvβ6 integrin-selective oncolytic adenovirus for epithelial ovarian cancer therapies. Clin. Cancer Res. 2018;24:4215–4224. PubMed
Jakubczak J.L., Rollence M.L., Stewart D.A., Jafari J.D., Von Seggern D.J., Nemerow G.R., Stevenson S.C., Hallenbeck P.L. Adenovirus type 5 viral particles pseudotyped with mutagenized fiber proteins show diminished infectivity of coxsackie B-adenovirus receptor-bearing cells. J. Virol. 2001;75:2972–2981. PubMed PMC
Kirby I., Davison E., Beavil A.J., Soh C.P., Wickham T.J., Roelvink P.W., Kovesdi I., Sutton B.J., Santis G. Identification of contact residues and definition of the CAR-binding site of adenovirus type 5 fiber protein. J. Virol. 2000;74:2804–2813. PubMed PMC
Nicklin S.A., Seggern D.J.V., Work L.M., Pek D.C., Dominiczak A.F., Nemerow G.R., Baker A.H. Ablating adenovirus type 5 fiber-CAR binding and HI loop insertion of the SIGYPLP peptide generate an endothelial cell-selective adenovirus. Mol. Ther. 2001;4:534–542. PubMed
Santis G., Legrand V., Hong S.S., Davison E., Kirby I., Imler J.L., Finberg R.W., Bergelson J.M., Mehtali M., Boulanger P. Molecular determinants of adenovirus serotype 5 fibre binding to its cellular receptor CAR. J. Gen. Virol. 1999;80:1519–1527. PubMed
DiCara D., Burman A., Clark S., Berryman S., Howard M.J., Hart I.R., Marshall J.F., Jackson T. Foot-and-Mouth disease virus forms a highly stable, EDTA-resistant complex with its principal receptor, integrin αvβ6: implications for infectiousness. J. Virol. 2008;82:1537–1546. PubMed PMC
Uusi-Kerttula H., Davies J., Coughlan L., Hulin-Curtis S., Jones R., Hanna L., Chester J.D., Parker A.L. Pseudotyped αvβ6 integrin-targeted adenovirus vectors for ovarian cancer therapies. Oncotarget. 2016;7:27926–27937. PubMed PMC
Stella Man Y.K., Foster J., Carapuça E., Davies J.A., Parker A.L., Sosabowski J., Halldén G. Systemic delivery and SPECT/CT in vivo imaging of 125I-labelled oncolytic adenoviral mutants in models of pancreatic cancer. Sci. Rep. 2019;9:12840. PubMed PMC
Man Y.K.S., Davies J.A., Coughlan L., Pantelidou C., Blázquez-Moreno A., Marshall J.F., Parker A.L., Halldén G. The novel oncolytic adenoviral mutant ad5-3Δ-A20T retargeted to αvβ6 integrins efficiently eliminates pancreatic cancer cells. Mol. Cancer Ther. 2018;17:575–587. PubMed
Coughlan L., Vallath S., Saha A., Flak M., McNeish I.A., Vassaux G., Marshall J.F., Hart I.R., Thomas G.J. In vivo retargeting of adenovirus type 5 to alphavbeta6 integrin results in reduced hepatotoxicity and improved tumor uptake following systemic delivery. J. Virol. 2009;83:6416–6428. PubMed PMC
Whilding L.M., Parente-Pereira A.C., Zabinski T., Davies D.M., Petrovic R.M.G., Kao Y.V., Saxena S.A., Romain A., Costa-Guerra J.A., Violette S., et al. Targeting of aberrant αvβ6 integrin expression in solid tumors using chimeric antigen receptor-engineered T cells. Mol. Ther. 2017;25:259–273. PubMed PMC
Ahmed N., Pansino F., Clyde R., Murthi P., Quinn M.A., Rice G.E., Agrez M.V., Mok S., Baker M.S. Overexpression of alpha(v)beta6 integrin in serous epithelial ovarian cancer regulates extracellular matrix degradation via the plasminogen activation cascade. Carcinogenesis. 2002;23:237–244. PubMed
Katoh D., Nagaharu K., Shimojo N., Hanamura N., Yamashita M., Kozuka Y., Imanaka-Yoshida K., Yoshida T. Binding of αvβ1 and αvβ6 integrins to tenascin-C induces epithelial-mesenchymal transition-like change of breast cancer cells. Oncogenesis. 2013;2:e65. PubMed PMC
Sun Q., Sun F., Wang B., Liu S., Niu W., Liu E., Peng C., Wang J., Gao H., Liang B., et al. Interleukin-8 promotes cell migration through integrin αvβ6 upregulation in colorectal cancer. Cancer Lett. 2014;354:245–253. PubMed
Bates R.C., Bellovin D.I., Brown C., Maynard E., Wu B., Kawakatsu H., Sheppard D., Oettgen P., Mercurio A.M. Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J. Clin. Invest. 2005;115:339–347. PubMed PMC
Tod J., Hanley C.J., Morgan M.R., Rucka M., Mellows T., Lopez M.-A., Kiely P., Moutasim K.A., Frampton S.J., Sabnis D., et al. Pro-migratory and TGF-β-activating functions of αvβ6 integrin in pancreatic cancer are differentially regulated via an Eps8-dependent GTPase switch. J. Pathol. 2017;243:37–50. PubMed PMC
Brown N.F., Marshall J.F. Integrin-mediated TGFβ activation modulates the tumour microenvironment. Cancers. 2019;11:1221. PubMed PMC
Darougar S., Walpita P., Thaker U., Viswalingam N., Gardner L., McSwiggan D.A. Adenovirus serotypes isolated from ocular infections in London. Br. J. Ophthalmol. 1983;67:111–114. PubMed PMC
Zografos L. [Keractoconjunctivitis caused by type 10 adenovirus] Ophthalmologica. 1977;174:61–64. PubMed
Huebner R.J., Rowe W.P. Adenoviruses as etiologic agents in conjunctivitis and Keratoconjunctivitis. Am. J. Ophthalmol. 1957;43:20–25. PubMed
Baker A.T., Greenshields-Watson A., Coughlan L., Davies J.A., Uusi-Kerttula H., Cole D.K., Rizkallah P.J., Parker A.L. Diversity within the adenovirus fiber knob hypervariable loops influences primary receptor interactions. Nat. Commun. 2019;10:741. PubMed PMC
Duffy M.R., Alonso-Padilla J., John L., Chandra N., Khan S., Ballmann M.Z., Lipiec A., Heemskerk E., Custers J., Arnberg N., et al. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56. J. Gen. Virol. 2018;99:135–147. PubMed
Nevels M., Spruss T., Wolf H., Dobner T. The adenovirus E4orf6 protein contributes to malignant transformation by antagonizing E1A-induced accumulation of the tumor suppressor protein p53. Oncogene. 1999;18:9–17. PubMed
Havenga M., Vogels R., Zuijdgeest D., Radosevic K., Mueller S., Sieuwerts M., Weichold F., Damen I., Kaspers J., Lemckert A., et al. Novel replication-incompetent adenoviral B-group vectors: high vector stability and yield in PER.C6 cells. J. Gen. Virol. 2006;87:2135–2143. PubMed
Alba R., Bradshaw A.C., Parker A.L., Bhella D., Waddington S.N., Nicklin S.A., van Rooijen N., Custers J., Goudsmit J., Barouch D.H., et al. Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer. Blood. 2009;114:965–971. PubMed PMC
Hara J., Ishibashi T., Fujimoto F., Danjyo S., Minekawa Y., Maeda A. Adenovirus type 10 Keratoconjunctivitis with increased intraocular pressure. Am. J. Ophthalmol. 1980;90:481–484. PubMed
Carlisle R.C., Di Y., Cerny A.M., Sonnen A.F.-P., Sim R.B., Green N.K., Subr V., Ulbrich K., Gilbert R.J.C., Fisher K.D., et al. Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1. Blood. 2009;113:1909–1918. PubMed PMC
Bradshaw A.C., Coughlan L., Miller A.M., Alba R., van Rooijen N., Nicklin S.A., Baker A.H. Biodistribution and inflammatory profiles of novel penton and hexon double-mutant serotype 5 adenoviruses. J. Control Release. 2012;164:394–402. PubMed PMC
Stanton R.J., McSharry B.P., Armstrong M., Tomasec P., Wilkinson G.W.G. Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function. Biotechniques. 2008;45:659–668. PubMed
Bates E.A., Counsell J.R., Alizert S., Baker A.T., Suff N., Boyle A., Bradshaw A.C., Waddington S.N., Nicklin S.A., Baker A.H., et al. In vitro and in vivo evaluation of human adenovirus type 49 as a vector for therapeutic applications. Viruses. 2021;13:1483. PubMed PMC
Nestić, D., Uil, T.G., Ma, J., Roy, S., Vellinga, J., Baker, A.H., Custers, J., and Majhen, D. αvβ3 integrin is required for efficient infection of epithelial cells with human adenovirus type 26. J. Virol. 93, e01474-18. PubMed PMC