Stereotactic radiotherapy for spinal hemangioblastoma - disease control and volume analysis in long-term follow up

. 2022 ; 27 (1) : 134-141. [epub] 20220322

Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35402025

BACKGROUND: This retrospective analysis evaluated the long-term outcome of spinal stereotactic body radiotherapy (SBRT) treatment for hemangioblastomas. MATERIALS AND METHODS: Between 2010 and 2018, 5 patients with 18 Von-Hippel Lindau-related pial-based spinal hemangioblastomas were treated with fractionated SBRT. After precisely registering images of all relevant datasets, we delineated the gross tumor volume, spinal cord (including intramedullary cysts and/or syrinxes), and past radiotherapy regions. A sequential optimization algorithm was used for dose determinations, and patients received 25-26 Gy in five fractions or 24 Gy in three fractions. On-line image guidance, based on spinal bone structures, and two orthogonal radiographs were provided. The actuarial nidus control, surgery-free survival, cyst/syrinx changes, and progression-free survival were calculated with the Kaplan-Meier method. Toxicities were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events v5.0. RESULTS: The median follow-up was 5 years after SBRT. Patients displayed one nidus progression, one need of neurosurgery, and two cyst/syrinx progressions directly connected to symptom worsening. No SBRT-related complications or acute adverse radiation-related events occurred. However, one asymptomatic radiological sign of myelopathy occurred two years after SBRT. All tumors regressed; the one-year equivalent tumor volume reduction was 0.2 mL and the median volume significantly decreased by 28% (p = 0.012). Tumor volume reductions were not correlated with the mean (p = 0.19) or maximum (p = 0.16) dose. CONCLUSIONS: SBRT for pial-based spinal hemangioblastomas was an effective, safe, viable alternative to neurosurgery in asymptomatic patients. Escalating doses above the conventional dose-volume limits of spinal cord tolerance showed no additional benefit.

Zobrazit více v PubMed

Qiu J, Cai D, Yang F, et al. Stereotactic radiosurgery for central nervous system hemangioblastoma in von Hippel-Lindau disease: A systematic review and meta-analysis. Clin Neurol Neurosurg. 2020;195:105912. doi: 10.1016/j.clineuro.2020.105912. PubMed DOI

Bridges KJ, Jaboin JJ, Kubicky CD, et al. Stereotactic radiosurgery versus surgical resection for spinal hemangioblastoma: A systematic review. Clin Neurol Neurosurg. 2017;154:59–66. doi: 10.1016/j.clineuro.2017.01.012. PubMed DOI

Pan J, Ho AL, D’Astous M, et al. Image-guided stereotactic radiosurgery for treatment of spinal hemangioblastoma. Neurosurg Focus. 2017;42(1):E12. doi: 10.3171/2016.10.FOCUS16361. PubMed DOI

Selch MT, Tenn S, Agazaryan N, et al. Image-guided linear accelerator-based spinal radiosurgery for hemangioblastoma. Surg Neurol Int. 2012;3:73. doi: 10.4103/2152-7806.98386. PubMed DOI PMC

Daly ME, Choi CYH, Gibbs IC, et al. Tolerance of the spinal cord to stereotactic radiosurgery: insights from hemangioblastomas. Int J Radiat Oncol Biol Phys. 2011;80(1):213–220. doi: 10.1016/j.ijrobp.2010.01.040. PubMed DOI

Chang UK, Rhee CH, Youn SM, et al. Radiosurgery using the Cyberknife for benign spinal tumors: Korea Cancer Center Hospital experience. J Neurooncol. 2011;101(1):91–99. doi: 10.1007/s11060-010-0231-8. PubMed DOI

Smalley SR, Schomberg PJ, Earle JD, et al. Radiotherapeutic considerations in the treatment of hemangioblastomas of the central nervous system. Int J Radiat Oncol Biol Phys. 1990;18(5):1165–1171. doi: 10.1016/0360-3016(90)90454-r. PubMed DOI

Kalash R, Glaser SM, Flickinger JC, et al. Stereotactic body radiation therapy for benign spine tumors: is dose deescalation appropriate? J Neurosurg Spine. 2018;29(2):220–225. doi: 10.3171/2017.12.SPINE17920. PubMed DOI PMC

Deng X, Wang K, Wu L, et al. Intraspinal hemangioblastomas: analysis of 92 cases in a single institution: clinical article. J Neurosurg Spine. 2014;21(2):260–269. doi: 10.3171/2014.1.SPINE13866. PubMed DOI

Puataweepong P, Dhanachai M, Hansasuta A, et al. The clinical outcome of intracranial hemangioblastomas treated with linac-based stereotactic radiosurgery and radiotherapy. J Radiat Res. 2014;55(4):761–768. doi: 10.1093/jrr/rrt235. PubMed DOI PMC

Matsunaga S, Shuto T, Inomori S, et al. Gamma knife radiosurgery for intracranial haemangioblastomas. Acta Neurochir (Wien) 2007;149(10):1007–13. doi: 10.1007/s00701-007-1274-2. discussion 1013. PubMed DOI

Mehta GU, Asthagiri AR, Bakhtian KD, et al. Functional outcome after resection of spinal cord hemangioblastomas associated with von Hippel-Lindau disease. J Neurosurg Spine. 2010;12(3):233–242. doi: 10.3171/2009.10.SPINE09592. PubMed DOI

Liu A, Jain A, Sankey EW, et al. Sporadic intramedullary hemangioblastoma of the spine: a single institutional review of 21 cases. Neurol Res. 2016;38(3):205–209. doi: 10.1179/1743132815Y.0000000097. PubMed DOI

Chang SD, Meisel JA, Hancock SL, et al. Treatment of hemangioblastomas in von Hippel-Lindau disease with linear accelerator-based radiosurgery. Neurosurgery. 1998;43(1):28–34. doi: 10.1097/00006123-199807000-00018. discussion 34. PubMed DOI

Asthagiri AR, Mehta GU, Zach L, et al. Prospective evaluation of radiosurgery for hemangioblastomas in von Hippel-Lindau disease. Neuro Oncol. 2010;12(1):80–86. doi: 10.1093/neuonc/nop018. PubMed DOI PMC

Moss JM, Choi CYH, Adler JR, et al. Stereotactic radiosurgical treatment of cranial and spinal hemangioblastomas. Neurosurgery. 2009;65(1):79–85. doi: 10.1227/01.NEU.0000348015.51685.D2. discussion 85. PubMed DOI

Harati A, Satopää J, Mahler L, et al. Early microsurgical treatment for spinal hemangioblastomas improves outcome in patients with von Hippel-Lindau disease. Surg Neurol Int. 2012;3:6. doi: 10.4103/2152-7806.92170. PubMed DOI PMC

Kano H, Niranjan A, Mongia S, et al. The role of stereotactic radiosurgery for intracranial hemangioblastomas. Neurosurgery. 2008;63(3):443–50. doi: 10.1227/01.NEU.0000313120.81565.D7. discussion 450. PubMed DOI

Kong FMS, Ritter T, Quint DJ, et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int J Radiat Oncol Biol Phys. 2011;81(5):1442–1457. doi: 10.1016/j.ijrobp.2010.07.1977. PubMed DOI PMC

Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPMTask Group 101. Med Phys. 2010;37(8):4078–4101. doi: 10.1118/1.3438081. PubMed DOI

Koh ES, Nichol A, Millar BA, et al. Role of fractionated external beam radiotherapy in hemangioblastoma of the central nervous system. Int J Radiat Oncol Biol Phys. 2007;69(5):1521–1526. doi: 10.1016/j.ijrobp.2007.05.025. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...