Analytical Performance of Clay Paste Electrode and Graphene Paste Electrode-Comparative Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
B2211100000047.01
University of Lodz
PubMed
35408436
PubMed Central
PMC9000814
DOI
10.3390/molecules27072037
PII: molecules27072037
Knihovny.cz E-zdroje
- Klíčová slova
- carbon paste electrodes, clay, graphene, paracetamol, sensors, square wave voltammetry,
- MeSH
- elektrochemické techniky metody MeSH
- elektrody MeSH
- grafit * chemie MeSH
- jíl MeSH
- paracetamol analýza MeSH
- uhlík chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- grafit * MeSH
- jíl MeSH
- paracetamol MeSH
- uhlík MeSH
The analytical performance of the clay paste electrode and graphene paste electrode was compared using square wave voltammetry (SWV) and cyclic voltammetry (CV). The comparison was made on the basis of a paracetamol (PA) determination on both working electrodes. The influence of pH and SWV parameters was investigated. The linear concentration ranges were found to be 6.0 × 10-7-3.0 × 10-5 and 2.0 × 10-6-8.0 × 10-5 mol L-1 for clay paste electrode (ClPE) and graphene paste electrode (GrPE), respectively. The detection and quantification limits were calculated as 1.4 × 10-7 and 4.7 ×10-7 mol L-1 for ClPE and 3.7 × 10-7 and 1.2 × 10-6 mol L-1 for GrPE, respectively. Developed methods were successfully applied to pharmaceutical formulations analyses. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to characterize ClPE and GrPE surfaces. Clay composition was examined with wavelength dispersive X-ray (WDXRF).
Zobrazit více v PubMed
Urbaniczky C., Lundström K. Voltammetric studies on carbon paste electrodes. The influence of paste composition on electrode capacity and kinetics. J. Electroanal. Chem. 1984;176:169–182. doi: 10.1016/S0022-0728(84)80315-0. DOI
Kalcher K. Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis. 1990;2:419–433. doi: 10.1002/elan.1140020603. DOI
Pauliukaite R., Metelka R., Švancara I., Królicka A., Bobrowski A., Vytřas K., Norkus E., Kalcher K. Carbon paste electrodes modified with Bi2O3 as sensors for the determination of Cd and Pb. Anal. Bioanal. Chem. 2002;374:1155–1158. doi: 10.1007/s00216-002-1569-3. PubMed DOI
Švancara I., Walcarius A., Kalcher K., Vytřas K. Carbon paste electrodes in the new millennium. Cent. Eur. J. Chem. 2009;7:598–656. doi: 10.2478/s11532-009-0097-9. DOI
Vytřas K., Švancara I., Metelka R. Carbon paste electrodes in electroanalytical chemistry. J. Serb. Chem. Soc. 2009;74:1021–1033. doi: 10.2298/JSC0910021V. DOI
Adraoui I., El Rhaz M., Amine A., Idrissi L., Curulli A., Palleschi G. Lead determination by anodic stripping voltammetry using a p-phenylenediamine modified carbon paste electrode. Electroanalysis. 2005;17:685–693. doi: 10.1002/elan.200403140. DOI
Smarzewska S., Pokora J., Leniart A., Festinger N., Ciesielski W. Carbon Paste Electrodes Modified with Graphene Oxides—Comparative Electrochemical Studies of Thioguanine. Electroanalysis. 2016;28:1562–1569. doi: 10.1002/elan.201501101. DOI
Smarzewska S., Ciesielski W. Application of a Graphene Oxide–Carbon Paste Electrode for the Determination of Lead in Rainbow Trout from Central Europe. Food Anal. Methods. 2015;8:635–642. doi: 10.1007/s12161-014-9925-4. DOI
Chetankumar K., Kumara Swamy B.E., Sharma S.C. Safranin amplified carbon paste electrode sensor for analysis of paracetamol and epinephrine in presence of folic acid and ascorbic acid. Microchem. J. 2021;160:105729. doi: 10.1016/j.microc.2020.105729. DOI
Winiarski J.P., Tavares B.F., de Fátima Ulbrich K., de Campos C.E.M., Souza A.A.U., Souza S.M.A.G.U., Jost C.L. Development of a multianalyte electrochemical sensor for depression biomarkers based on a waste of the steel industry for a sustainable and one-step electrode modification. Microchem. J. 2022;175:107141. doi: 10.1016/j.microc.2021.107141. DOI
Islam M.M., Arifuzzaman M., Rushd S., Islam M.K., Rahman M.M. Electrochemical sensor based on poly (aspartic acid) modified carbon paste electrode for paracetamol determination. Int. J. Electrochem. Sci. 2022;17 doi: 10.20964/2022.02.39. DOI
De Fatima Ulbrich K., Winiarski J.P., Jost C.L., de Campos C.E.M. Green and facile solvent-free synthesis of NiTe2 nanocrystalline material applied to voltammetric determination of antioxidant morin. Mater. Today Commun. 2020;25:101251. doi: 10.1016/j.mtcomm.2020.101251. DOI
Hassanein A., Salahuddin N., Matsuda A., Kawamura G., Elfiky M. Fabrication of biosensor based on Chitosan-ZnO/Polypyrrole nanocomposite modified carbon paste electrode for electroanalytical application. Mater. Sci. Eng. C. 2017;80:494–501. doi: 10.1016/j.msec.2017.04.101. PubMed DOI
Tanuja S.B., Kumara Swamy B.E., Pai K.V. Electrochemical determination of paracetamol in presence of folic acid at nevirapine modified carbon paste electrode: A cyclic voltammetric study. J. Electroanal. Chem. 2017;798:17–23. doi: 10.1016/j.jelechem.2017.05.025. DOI
Özcan A., Topçuoğulları D. Voltammetric determination of 17-Β-estradiol by cysteamine self-assembled gold nanoparticle modified fumed silica decorated graphene nanoribbon nanocomposite. Sens. Actuators B Chem. 2017;250:85–90. doi: 10.1016/j.snb.2017.04.131. DOI
Priya T., Dhanalakshmi N., Thinakaran N. Electrochemical behavior of Pb (II) on a heparin modified chitosan/graphene nanocomposite film coated glassy carbon electrode and its sensitive detection. Int. J. Biol. Macromol. 2017;104:672–680. doi: 10.1016/j.ijbiomac.2017.06.082. PubMed DOI
Smarzewska S., Metelka R., Festinger N., Guziejewski D., Ciesielski W. Comparative Study on Electroanalysis of Fenthion Using Silver Amalgam Film Electrode and Glassy Carbon Electrode Modified with Reduced Graphene Oxide. Electroanalysis. 2017;29:1154–1160. doi: 10.1002/elan.201600710. DOI
Smarzewska S., Guziejewski D., Leniart A., Ciesielski W. Nanomaterials vs Amalgam in Electroanalysis: Comparative Electrochemical Studies of Lamotrigine. J. Electrochem. Soc. 2017;164:B321–B329. doi: 10.1149/2.0221707jes. DOI
Zarei K., Khodadadi A. Very sensitive electrochemical determination of diuron on glassy carbon electrode modified with reduced graphene oxide–gold nanoparticle–Nafion composite film. Ecotoxicol. Environ. Saf. 2017;144:171–177. doi: 10.1016/j.ecoenv.2017.06.030. PubMed DOI
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Katsnelson M.I. Graphene: Carbon in two dimensions. Mater. Today. 2007;10:20–27. doi: 10.1016/S1369-7021(06)71788-6. DOI
Bolotin K.I., Sikes K.J., Jiang Z., Klima M., Fudenberg G., Hone J., Kim P., Stormer H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008;146:351–355. doi: 10.1016/j.ssc.2008.02.024. DOI
Allen M.J., Tung V.C., Kaner R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010;110:132–145. doi: 10.1021/cr900070d. PubMed DOI
Shao Y., Wang J., Wu H., Liu J., Aksay I.A., Lin Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis. 2010;22:1027–1036. doi: 10.1002/elan.200900571. DOI
Novoselov K.S., Fal’Ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for graphene. Nature. 2012;490:192–200. doi: 10.1038/nature11458. PubMed DOI
Parvin M.H. Graphene paste electrode for detection of chlorpromazine. Electrochem. Commun. 2011;13:366–369. doi: 10.1016/j.elecom.2011.01.027. DOI
Shakibaian V., Parvin M.H. Determination of acetazolamide by graphene paste electrode. J. Electroanal. Chem. 2012;683:119–124. doi: 10.1016/j.jelechem.2012.07.042. DOI
Gasnier A., Pedano M.L., Rubianes M.D., Rivas G.A. Graphene paste electrode: Electrochemical behavior and analytical applications for the quantification of NADH. Sens. Actuators B Chem. 2013;176:921–926. doi: 10.1016/j.snb.2012.09.092. DOI
Pinnavaia T.J. Intercalated clay catalysts. Science. 1983;220:365–371. doi: 10.1126/science.220.4595.365. PubMed DOI
El Kasmi S., Lahrich S., Farahi A., Zriouil M., Ahmamou M., Bakasse M., El Mhammedi M.A. Electrochemical determination of paraquat in potato, lemon, orange and natural water samples using sensitive-rich clay carbon electrode. J. Taiwan Inst. Chem. Eng. 2016;58:165–172. doi: 10.1016/j.jtice.2015.06.039. DOI
Manisankar P., Selvanathan G., Vedhi C. Utilization of sodium montmorillonite clay-modified electrode for the determination of isoproturon and carbendazim in soil and water samples. Appl. Clay Sci. 2005;29:249–257. doi: 10.1016/j.clay.2005.01.006. DOI
El Mhammedi M.A., Bakasse M., Najih R., Chtaini A. A carbon paste electrode modified with kaolin for the detection of diquat. Appl. Clay Sci. 2009;43:130–134. doi: 10.1016/j.clay.2008.07.021. DOI
Abbaci A., Azzouz N., Bouznit Y. A new copper doped montmorillonite modified carbon paste electrode for propineb detection. Appl. Clay Sci. 2014;90:130–134. doi: 10.1016/j.clay.2013.12.036. DOI
Loudiki A., Hammani H., Boumya W., Lahrich S., Farahi A., Achak M., Bakasse M., El Mhammedi M.A. Electrocatalytical effect of montmorillonite to oxidizing ibuprofen: Analytical application in river water and commercial tablets. Appl. Clay Sci. 2016;123:99–108. doi: 10.1016/j.clay.2016.01.013. DOI
El-Desoky H.S., Ismail I.M., Ghoneim M.M. Stripping voltammetry method for determination of manganese as complex with oxine at the carbon paste electrode with and without modification with montmorillonite clay. J. Solid State Electrochem. 2013;17:3153–3167. doi: 10.1007/s10008-013-2204-2. DOI
Falaras P., Lezou F. Electrochemical behavior of acid activated montmorillonite modified electrodes. J. Electroanal. Chem. 1998;455:169–179. doi: 10.1016/S0022-0728(98)00272-1. DOI
Navrátilová Z., Kula P. Cation and anion exchange on clay modified electrodes. J. Solid State Electrochem. 2000;4:342–347. doi: 10.1007/s100080000126. DOI
Navrátilová Z., Mucha M. Organo-montmorillonites as carbon paste electrode modifiers. J. Solid State Electrochem. 2015;19:2013–2022. doi: 10.1007/s10008-015-2751-9. DOI
Niedziałkowski P., Cebula Z., Malinowska N., Białobrzeska W., Sobaszek M., Ficek M., Bogdanowicz R., Anand J.S., Ossowski T. Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls. Biosens. Bioelectron. 2019;126:308–314. doi: 10.1016/j.bios.2018.10.063. PubMed DOI
Kang X., Wang J., Wu H., Liu J., Aksay I.A., Lin Y. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta. 2010;81:754–759. doi: 10.1016/j.talanta.2010.01.009. PubMed DOI
Silva T.A., Zanin H., Corat E.J., Fatibello-Filho O. Simultaneous Voltammetric Determination of Paracetamol, Codeine and Caffeine on Diamond-like Carbon Porous Electrodes. Electroanalysis. 2017;29:907–916. doi: 10.1002/elan.201600665. DOI
Nematollahi D., Shayani-Jam H., Alimoradi M., Niroomand S. Electrochemical oxidation of acetaminophen in aqueous solutions: Kinetic evaluation of hydrolysis, hydroxylation and dimerization processes. Electrochim. Acta. 2009;54:7407–7415. doi: 10.1016/j.electacta.2009.07.077. DOI
Tyszczuk-Rotko K., Bȩczkowska I., Wójciak-Kosior M., Sowa I. Simultaneous voltammetric determination of paracetamol and ascorbic acid using a boron-doped diamond electrode modified with Nafion and lead films. Talanta. 2014;129:384–391. doi: 10.1016/j.talanta.2014.06.023. PubMed DOI
Karikalan N., Karthik R., Chen S.M., Velmurugan M., Karuppiah C. Electrochemical properties of the acetaminophen on the screen printed carbon electrode towards the high performance practical sensor applications. J. Colloid Interface Sci. 2016;483:109–117. doi: 10.1016/j.jcis.2016.08.028. PubMed DOI