Semantics of European poetry is shaped by conservative forces: The relationship between poetic meter and meaning in accentual-syllabic verse

. 2022 ; 17 (4) : e0266556. [epub] 20220412

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35413059

Recent advances in cultural analytics and large-scale computational studies of art, literature and film often show that long-term change in the features of artistic works happens gradually. These findings suggest that conservative forces that shape creative domains might be underestimated. To this end, we provide the first large-scale formal evidence of the association between poetic meter and semantics in 18-19th century European literatures, using Czech, German and Russian collections with additional data from English poetry and early modern Dutch songs. Our study traces this association through a series of unsupervised classifications using the abstracted semantic features of poems that are inferred for individual texts with the aid of topic modeling. Topics alone enable recognition of the meters in each observed language, as may be seen from the same-meter samples clustering together (median Adjusted Rand Index between 0.48 and 1 across traditions). In addition, this study shows that the strength of the association between form and meaning tends to decrease over time. This may reflect a shift in aesthetic conventions between the 18th and 19th centuries as individual innovation was increasingly favored in literature. Despite this decline, it remains possible to recognize semantics of the meters from past or future, which suggests the continuity in meter-meaning relationships while also revealing the historical variability of conditions across languages. This paper argues that distinct metrical forms, which are often copied in a language over centuries, also maintain long-term semantic inertia in poetry. Our findings highlight the role of the formal features of cultural items in influencing the pace and shape of cultural evolution.

Zobrazit více v PubMed

Manovich L. Cultural Analytics. MIT Press; 2020.

Heuser R, Le-Khac L. A Quantitative Literary History of 2,958 Nineteenth-Century British Novels: The Semantic Cohort Method. Standford Literary Lab Pamphlet. 2012;4.

Morin O, Acerbi A. Birth of the cool: a two-centuries decline in emotional expression in Anglophone fiction. Cognition & Emotion. 2017;31(8):1663–1675. doi: 10.1080/02699931.2016.1260528 PubMed DOI

Hughes JM, Foti NJ, Krakauer DC, Rockmore DN. Quantitative patterns of stylistic influence in the evolution of literature. Proceedings of the National Academy of Sciences. 2012;109(20):7682–7686. doi: 10.1073/pnas.1115407109 PubMed DOI PMC

Storey G, Mimno D. Like Two Pis in a Pod: Author Similarity Across Time in the Ancient Greek Corpus. Journal of Cultural Analytics. 2020; doi: 10.22148/001c.13680 DOI

Cutting JE, Brunick KL, DeLong JE, Iricinschi C, Candan A. Quicker, Faster, Darker: Changes in Hollywood Film over 75 Years. i-Perception. 2011;2(6):569–576. doi: 10.1068/i0441aap PubMed DOI PMC

Underwood T. Distant Horizons: Digital Evidence and Literary Change. University of Chicago Press; 2019.

Underwood T. The literary uses of high-dimensional space. Big Data & Society. 2015;2.

Tynianov Y. Permanent Evolution: Selected Essays on Literature, Theory and Film. Boston: Academic Studies Press; 2019.

Simmel G. Fashion. International Quarterly. 1904;10(1):136.

Mauch M, McCallum RM, Levy M, Leroi AM. The evolution of popular music: USA 1960–2010 \textbar Royal Society Open Science. Royal Society Open Science. 2015;2. doi: 10.1098/rsos.150081 PubMed DOI PMC

Yarkho B. Speech Distribution in Five-Act Tragedies (A Question of Classicism and Romanticism). Journal of Literary Theory. 2019;13(1):13–76. doi: 10.1515/jlt-2019-0002 DOI

Peterson RA, Berger DG. Cycles in Symbol Production: The Case of Popular Music. American Sociological Review. 1975;40(2):158–173. doi: 10.2307/2094343 DOI

Klimek P, Kreuzbauer R, Thurner S. Fashion and art cycles are driven by counter-dominance signals of elite competition: quantitative evidence from music styles. Journal of The Royal Society Interface. 2019;16(151):20180731. doi: 10.1098/rsif.2018.0731 PubMed DOI PMC

Morin O. How Traditions Live and Die. Oxford University Press; USA; 2015.

Gasparov M. Metr i smysl: ob odnom iz mekhanizmov kulturnoi pamiati. Moscow: Izdatelskii tsentr RGGU; 1999.

Tarlinskaja M, Oganesova N. Meter and Meaning: The Semantic Halo of Verse Form in English Romantic Lyrical Poems (Iambic and Trochaic Tetrameter). The American Journal of Semiotics. 1986;4(3/4):85–106. doi: 10.5840/ajs198643/422 DOI

Tarlinskaja M. Meter and Meaning: Semantic Associations of the English “Dolnik” Verse Form. Style. 1989;23(2):238–260.

Červenka M. Z večerní školy versologie II: Sémantika a funkce veršových útvarů. Prague: Akcent; 1991.

Gasparov M. A History of European Versification. Oxford, New York: Oxford University Press; 1996.

Pszczołowska L, editor. Słowiańska metryka porównawcza 3: Semantyka form wierszowych. Wrocław: Zakład Narodowy Imienia Ossolińskich; 1988.

Dobrzyńska T. Verse Forms as Bearers of Semantic Values. Studia Metrica et Poetica. 2014;1(2):103–128. doi: 10.12697/smp.2014.1.2.05 DOI

Piperski A. Semantic halo of a meter: a keyword-based approach. In: Kompiuternaia lingvistka i intellectualnyie tekhnoloigii. vol. 2 of Kompiuternaia lingvistika: lingvisticheskiie issledovaniia. Moscow: RGGU; 2017. p. 342–354.

Orekhov B. Bashkirskii stikh XX veka. Korpusnoe issledovanie. St. Petersburg: Aletejia; 2019.

Šeļa A, Orekhov B, Leibov R. Weak Genres: Modeling Association Between Poetic Meter and Meaning in Russian Poetry. In: CHR 2020: Workshop on Computational Humanities Research. Amsterdam: CEUR-WS; 2020. p. 12–31. Available from: http://ceur-ws.org/Vol-2723/long35.pdf.

Boyd R, Richerson PJ. Culture and the evolutionary process. Chicago: University of Chicago Press; 1988.

Mesoudi A. Cultural Evolution: How Darwinian Theory Can Explain Human Culture and Synthesize the Social Sciences. University of Chicago Press; 2011.

El Mouden C, André JB, Morin O, Nettle D. Cultural transmission and the evolution of human behaviour: a general approach based on the Price equation. Journal of Evolutionary Biology. 2014;27(2):231–241. doi: 10.1111/jeb.12296 PubMed DOI

Dingemanse M, Blasi DE, Lupyan G, Christiansen MH, Monaghan P. Arbitrariness, Iconicity, and Systematicity in Language. Trends in Cognitive Sciences. 2015;19(10):603–615. doi: 10.1016/j.tics.2015.07.013 PubMed DOI

Monaghan P, Shillcock RC, Christiansen MH, Kirby S. How arbitrary is language? Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369(1651):20130299. doi: 10.1098/rstb.2013.0299 PubMed DOI PMC

Pimentel T, McCarthy AD, Blasi D, Roark B, Cotterell R. Meaning to Form: Measuring Systematicity as Information. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: Association for Computational Linguistics; 2019. p. 1751–1764. Available from: https://aclanthology.org/P19-1171.

Kirby S, Tamariz M, Cornish H, Smith K. Compression and communication in the cultural evolution of linguistic structure. Cognition. 2015;141:87–102. doi: 10.1016/j.cognition.2015.03.016 PubMed DOI

Nölle J, Staib M, Fusaroli R, Tylén K. The emergence of systematicity: How environmental and communicative factors shape a novel communication system. Cognition. 2018;181:93–104. doi: 10.1016/j.cognition.2018.08.014 PubMed DOI

Rubin DC. Memory in Oral Traditions: The Cognitive Psychology of Epic, Ballads, and Counting-Out Rhymes. Oxford University Press; USA; 1995.

Gasparov ML, Tarlinskaja M. The Linguistics of Verse. The Slavic and East European Journal. 2008;52(2):198–207.

Abrams MH. The Mirror and the Lamp: Romantic Theory and the Critical Tradition. Oxford University Press; 1953.

Blei DM. Latent Dirichlet Allocation. Journal of Machine Learning Research. 2003;3:993–1022.

Saintsbury G. A History of English Prosody. Macmillan and Co.; 1906.

Tarlinskaja M. English Verse: Theory and History. De Gruyter Mouton; 1976. Available from: 10.1515/9783112419427. DOI

Hubert LJ, Arabie P. Comparing partitions. Journal of Classification. 1985;2(2-3):193–218. doi: 10.1007/BF01908075 DOI

Chang KK, DeDeo S. Divergence and the Complexity of Difference in Text and Culture. Journal of Cultural Analytics. 2020; doi: 10.22148/001c.17585 DOI

Underwood T, So RJ. Can We Map Culture? Journal of Cultural Analytics. 2021; p. 24911.

Gronas M. Cognitive Poetics and Cultural Memory: Russian Literary Mnemonics. 1st ed. New York: Routledge; 2010.

Sgallová Květa. Dlouhé trocheje v české poezii. Česká literatura. 2012;60(3):321–337.

Durham WH. Advances in Evolutionary Culture Theory. Annual Review of Anthropology. 1990;19(1):187–210. doi: 10.1146/annurev.an.19.100190.001155 DOI

Lambert B, Kontonatsios G, Mauch M, Kokkoris T, Jockers M, Ananiadou S, et al.. The pace of modern culture. Nature Human Behaviour. 2020;4(4):352–360. doi: 10.1038/s41562-019-0802-4 PubMed DOI

Perreault C. The Pace of Cultural Evolution. PLOS ONE. 2012;7(9):e45150. doi: 10.1371/journal.pone.0045150 PubMed DOI PMC

Gray RD, Jordan FM. Language trees support the express-train sequence of Austronesian expansion. Nature. 2000;405(6790):1052–1055. doi: 10.1038/35016575 PubMed DOI

O’Brien MJ, Lyman RL. Evolutionary archeology: Current status and future prospects. Evolutionary Anthropology: Issues, News, and Reviews. 2002;11(1):26–36. doi: 10.1002/evan.10007 DOI

Barbrook AC, Howe CJ, Blake N, Robinson P. The phylogeny of The Canterbury Tales. Nature. 1998;394(6696):839–839. doi: 10.1038/29667 DOI

Youngblood M, Baraghith K, Savage PE. Phylogenetic reconstruction of the cultural evolution of electronic music via dynamic community detection (1975-1999). arXiv:201102460 [q-bio, stat]. 2020;.

Plecháč P, Kolár R. The Corpus of Czech Verse. Studia Metrica et Poetica. 2015;2(1):107–118. doi: 10.12697/smp.2015.2.1.05 DOI

Plecháč P. Czech Verse Processing System KVĚTA—Phonetic and Metrical Components. Glottotheory. 2016;7(2):159–174.

van Kranenburg P, de Bruin M, Volk A. Documenting a song culture: the Dutch Song Database as a resource for musicological research. International Journal on Digital Libraries. 2019;20(1):13–23. doi: 10.1007/s00799-017-0228-4 DOI

Jacobs AM. The Gutenberg English Poetry Corpus: Exemplary Quantitative Narrative Analyses. Frontiers in Digital Humanities. 2018;5:5. doi: 10.3389/fdigh.2018.00005 DOI

Bobenhausen K. The Metricalizer: Automated Metrical Markup for German Poetry. In: Küper C, editor. Current Trends in Metrical Analysis. Frankfurt am Main: Peter Lang; 2011. p. 119–131.

Bobenhausen K, Hammerich B. Métrique littéraire, métrique linguistique et métrique algorithmique de l’allemand mises en jeu dans le programme Metricalizer2. Langages. 2015;199:67–87. doi: 10.3917/lang.199.0067 DOI

Grishina E, Korchagin K, Plungian V, Sichinava D. Poeticheskii korpus v ramkah NKRIA: obschaia struktura i perspektivy ispolzovania. In: Natsionalnii korpus russkogo iazyka: 2006-2008. Novye rezultaty i perspektivy. St. Petersburg: Nestor-Istoria; 2009. p. 71–113.

Korchagin K. Poezija XX veka v poeticheskom podkorpuse Natsional’nogo korpusa russkogo iazyka: problema reprezentativnosti. Trudy instituta im VV Vinogradova. 2015;6:235–256.

Heuser R, Falk J, Anttila A. Prosodic (software); 2010. https://github.com/quadrismegistus/prosodic.

Straková J, Straka M, Hajič J. Open-Source Tools for Morphology, Lemmatization, POS Tagging and Named Entity Recognition. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Baltimore, Maryland: Association for Computational Linguistics; 2014. p. 13–18.

Schmid H. TreeTagger-a language independent part-of-speech tagger. http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/. 1994;.

Boyd-Graber J, Mimno D, Newman D. Care and Feeding of Topic Models: Problems, Diagnostics, and Improvements. In: Handbook of Mixed Membership Models and Their Applications. CRC Handbooks of Modern Statistical Methods. Boca Raton, Florida: CRC Press; 2014. p. 3–41.

Schofield A, Magnusson M, Thompson L, Mimno D. Understanding Text Pre-Processing for Latent Dirichlet Allocation. In: Proceedings of the 1st Workshop for Women and Underrepresented Minorities in Natural Language Processing. EMNLP; 2017. p. 432–436. Available from: http://www.cs.cornell.edu/~xanda/winlp2017.pdf.

Uglanova I, Gius E. The Order of Things. A Study on Topic Modelling of Literary Texts. In: CHR 2020: Workshop on Computational Humanities Research. Amsterdam: CEUR-WS; 2020. p. 57–76. Available from: http://ceur-ws.org/Vol-2723/long7.pdf.

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed Representations of Words and Phrases and their Compositionality. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ, editors. Advances in Neural Information Processing Systems. vol. 26. Curran Associates, Inc.; 2013. p. 1–9. Available from: https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

Řehůřek R, Sojka P. Software Framework for Topic Modelling with Large Corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Valletta, Malta: ELRA; 2010. p. 45–50.

Barron ATJ, Huang J, Spang RL, DeDeo S. Individuals, institutions, and innovation in the debates of the French Revolution. Proceedings of the National Academy of Sciences. 2018;115(18):4607–4612. doi: 10.1073/pnas.1717729115 PubMed DOI PMC

Murdock J, Allen C, DeDeo S. Exploration and Exploitation of Victorian Science in Darwin’s Reading Notebooks. Cognition. 2017;159:117–126. doi: 10.1016/j.cognition.2016.11.012 PubMed DOI

Li C, Duan Y, Wang H, Zhang Z, Sun A,Ma Z. Enhancing Topic Modeling for Short Texts with Auxiliary Word Embeddings. ACM Trans Inf Syst. 2017;36(2). doi: 10.1145/3091108 DOI

Asgari E, Ghassemi M, Finlayson MA. Confirming the themes and interpretive unity of Ghazal poetry using topic models. Neural Information Processing Systems (NIPS) Workshop for Topic Models. 2013;.

Navarro-Colorado B. On Poetic Topic Modeling: Extracting Themes and Motifs From a Corpus of Spanish Poetry. Frontiers in Digital Humanities. 2018;5:15. doi: 10.3389/fdigh.2018.00015 DOI

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...