Enhanced visible-light photodegradation of fluoroquinolone-based antibiotics and E. coli growth inhibition using Ag-TiO2 nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35423911
PubMed Central
PMC8697706
DOI
10.1039/d0ra10403e
PII: d0ra10403e
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Antibiotics in wastewater represent a growing and worrying menace for environmental and human health fostering the spread of antimicrobial resistance. Titanium dioxide (TiO2) is a well-studied and well-performing photocatalyst for wastewater treatment. However, it presents drawbacks linked with the high energy needed for its activation and the fast electron-hole pair recombination. In this work, TiO2 nanoparticles were decorated with Ag nanoparticles by a facile photochemical reduction method to obtain an increased photocatalytic response under visible light. Although similar materials have been reported, we advanced this field by performing a study of the photocatalytic mechanism for Ag-TiO2 nanoparticles (Ag-TiO2 NPs) under visible light taking in consideration also the rutile phase of the TiO2 nanoparticles. Moreover, we examined the Ag-TiO2 NPs photocatalytic performance against two antibiotics from the same family. The obtained Ag-TiO2 NPs were fully characterised. The results showed that Ag NPs (average size: 23.9 ± 18.3 nm) were homogeneously dispersed on the TiO2 surface and the photo-response of the Ag-TiO2 NPs was greatly enhanced in the visible light region when compared to TiO2 P25. Hence, the obtained Ag-TiO2 NPs showed excellent photocatalytic degradation efficiency towards the two fluoroquinolone-based antibiotics ciprofloxacin (92%) and norfloxacin (94%) after 240 min of visible light irradiation, demonstrating a possible application of these particles in wastewater treatment. In addition, it was also proved that, after five Ag-TiO2 NPs re-utilisations in consecutive ciprofloxacin photodegradation reactions, only a photocatalytic efficiency drop of 8% was observed. Scavengers experiments demonstrated that the photocatalytic mechanism of ciprofloxacin degradation in the presence of Ag-TiO2 NPs is mainly driven by holes and ˙OH radicals, and that the rutile phase in the system plays a crucial role. Finally, Ag-TiO2 NPs showed also antibacterial activity towards Escherichia coli (E. coli) opening the avenue for a possible use of this material in hospital wastewater treatment.
Zobrazit více v PubMed
Schwarzenbach P. Egli T. Hofstetter T. B. Von Gunten U. Wehrli B. Global water pollution and human health. Annu. Rev. Environ. Resour. 2010;35:109–136. doi: 10.1146/annurev-environ-100809-125342. DOI
Bhuiyan A. B. Mokhtar M. Toriman M. E. Gasim M. B. Ta G. C. Elfithri R. Razman M. R. The environmental risk and water pollution: A review from the river basins around the world. Am.-Eurasian J. Sustain. Agric. 2013;7:126–136.
Durán-Álvarez J. C. Avella E. Ramírez-Zamora R. M. Zanella R. Photocatalytic degradation of ciprofloxacin using mono-(Au, Ag and Cu) and bi- (Au-Ag and Au-Cu) metallic nanoparticles supported on TiO2 under UV-C and simulated sunlight. Catal. Today. 2016;266:175–187. doi: 10.1016/j.cattod.2015.07.033. DOI
Ali T. Ahmed A. Alam U. Uddin I. Tripathi P. Muneer M. Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 2018;212:325–335. doi: 10.1016/j.matchemphys.2018.03.052. DOI
Carlsson C. Johansson A. Alvan G. Bergman K. Ku T. Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients. Sci. Total Environ. 2006;364:67–87. doi: 10.1016/j.scitotenv.2005.06.035. PubMed DOI
Hough W. L. Rogers R. D. Ionic liquids then and now: from solvents to materials to active pharmaceutical ingredients. Bull. Chem. Soc. Jpn. 2007;80:2262–2269. doi: 10.1246/bcsj.80.2262. DOI
Maia A. S. Ribeiro A. R. Amorim C. L. Barreiro J. C. Cass Q. B. Castro P. M. L. Tiritan M. E. Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2014;1333:87–98. doi: 10.1016/j.chroma.2014.01.069. PubMed DOI
Teixeira S. Gurke R. Eckert H. Kühn K. Fauler J. Cuniberti G. Photocatalytic degradation of pharmaceuticals present in conventional treated wastewater by nanoparticle suspensions. J. Environ. Chem. Eng. 2016;4:287–292. doi: 10.1016/j.jece.2015.10.045. DOI
Daughton C. Environmental stewardship and drugs as pollutants. Lancet. 2002;360:1035–1036. doi: 10.1016/S0140-6736(02)11176-7. PubMed DOI
Xu W. Zhang G. Li X. Zou S. Li P. Hu Z. Li J. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res. 2007;41:4526–4534. doi: 10.1016/j.watres.2007.06.023. PubMed DOI
Shi L. Zhou X. F. Zhang Y. L. Gu G. W. Simultaneous determination of 8 fluoroquinolone antibiotics in sewage treatment plants by solid-phase extraction and liquid chromatography with fluorescence detection. Water Sci. Technol. 2009;59:805–813. doi: 10.2166/wst.2009.062. PubMed DOI
Larsson D. G. J. de Pedro C. Paxeus N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 2007;148:751–755. doi: 10.1016/j.jhazmat.2007.07.008. PubMed DOI
Li D. Yang M. Hu J. Zhang Y. Chang H. Jin F. Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res. 2008;42:307–317. doi: 10.1016/j.watres.2007.07.016. PubMed DOI
Mahdi-Ahmed M. Chiron S. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater. J. Hazard. Mater. 2014;265:41–46. doi: 10.1016/j.jhazmat.2013.11.034. PubMed DOI
Jiang Z. Zhu J. Liu D. Wei W. Xie J. Chen M. In situ synthesis of bimetallic Ag/Pt loaded single-crystalline anatase TiO2 hollow nano-hemispheres and their improved photocatalytic properties. CrystEngComm. 2014;16:2384–2394. doi: 10.1039/C3CE41949E. DOI
Pearce C. I. Lloyd J. R. Guthrie J. T. The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes Pigm. 2003;58:179–196. doi: 10.1016/S0143-7208(03)00064-0. DOI
Van Der Bruggen B. Vandecasteele C. Removal of pollutants from surface water and groundwater by nanofiltration: Overview of possible applications in the drinking water industry. Environ. Pollut. 2003;122:435–445. doi: 10.1016/S0269-7491(02)00308-1. PubMed DOI
Hollender J. Zimmermann S. G. Koepke S. Krauss M. McArdell C. S. Ort C. Singer H. Von Gunten U. Siegrist H. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full scale post-ozonation followed by sand filtration. Environ. Sci. Technol. 2012;43:7862–7869. doi: 10.1021/es9014629. PubMed DOI
Hu C. Y. Lo S. L. Kuan W. H. Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes. Water Res. 2003;37:4513–4523. doi: 10.1016/S0043-1354(03)00378-6. PubMed DOI
Iram M. Guo C. Guan Y. Ishfaq A. Liu H. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J. Hazard. Mater. 2010;181:1039–1050. doi: 10.1016/j.jhazmat.2010.05.119. PubMed DOI
Saud P. S. Pant B. Alam A. M. Ghouri Z. K. Park M. Kim H. Y. Carbon quantum dots anchored TiO2 nanofibers: Effective photocatalyst for waste water treatment. Ceram. Int. 2015;41:11953–11959. doi: 10.1016/j.ceramint.2015.06.007. DOI
Friedler E. Gilboa Y. Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing. Sci. Total Environ. 2010;408:2109–2117. doi: 10.1016/j.scitotenv.2010.01.051. PubMed DOI
Ibhadon A. O. Fitzpatrick P. Heterogeneous photocatalysis: recent advances and applications. Catalysts. 2013;3:189–218. doi: 10.3390/catal3010189. DOI
Ma Y. Wang X. Jia Y. Chen X. Han H. Li C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014;114:9987–10043. doi: 10.1021/cr500008u. PubMed DOI
Fujishima A. Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38. doi: 10.1038/238037a0. PubMed DOI
Jia C. Zhang X. Matras-Postolek K. Huang B. Yang P. Z-scheme reduced graphene oxide/TiO2-Bronze/W18O49 ternary heterostructure towards efficient full solar-spectrum photocatalysis. Carbon. 2018;139:415–426. doi: 10.1016/j.carbon.2018.07.024. DOI
Nasr M. Soussan L. Viter R. Eid C. Habchi R. Miele P. Bechelany M. High photodegradation and antibacterial activity of BN-Ag/TiO2 composite nanofibers under visible light. New J. Chem. 2018;42:1250–1259. doi: 10.1039/C7NJ03183A. DOI
Shang M. Hou H. Gao F. Wang L. Yang W. Mesoporous Ag@TiO2 nanofibers and their photocatalytic activity for hydrogen evolution. RSC Adv. 2017;7:30051–30059. doi: 10.1039/C7RA03177G. DOI
Yar A. Haspulat B. Üstün T. Eskizeybek V. Avci A. Kamiş H. Achour S. Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity. RSC Adv. 2017;7:29806–29814. doi: 10.1039/C7RA03699J. DOI
Keller V. Bernhardt P. Garin F. Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. J. Catal. 2003;215:129–138. doi: 10.1016/S0021-9517(03)00002-2. DOI
Pal B. Sharon M. Nogami G. Preparation and characterisation of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties. Mater. Chem. Phys. 1999;59:254–261. doi: 10.1016/S0254-0584(99)00071-1. DOI
Martins P. Kappert S. Le H. N. Sebastian V. Kühn K. Alves M. Pereira L. Cuniberti G. Melle-Franco M. Lanceros-Méndez S. Enhanced photocatalytic activity of au/TiO2 nanoparticles against ciprofloxacin. Catalysts. 2020;10:234. doi: 10.3390/catal10020234. DOI
Yao Y. C. Dai X. R. Hu X. Y. Huang S. Z. Jin Z. Synthesis of Ag-decorated porous TiO2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity. Appl. Surf. Sci. 2016;387:469–476. doi: 10.1016/j.apsusc.2016.06.130. DOI
Scott T. Zhao H. Deng W. Feng X. Li Y. Photocatalytic degradation of phenol in water under simulated sunlight by an ultrathin MgO coated Ag/TiO2 nanocomposite. Chemosphere. 2019;216:1–8. doi: 10.1016/j.chemosphere.2018.10.083. PubMed DOI
Ko S. Banerjee C. K. Sankar J. Photochemical synthesis and photocatalytic activity in simulated solar light of nanosized Ag doped TiO2 nanoparticle composite. Composites, Part B. 2011;42:579–583. doi: 10.1016/j.compositesb.2010.09.007. DOI
Zhang L. Ji Y. Wu D. Du S. Zhang S. Zhou S. Controlled synthesis of Ag/TiO2 nanotube arrays composites with different Ag loading and their enhanced photoelectrochemical and photocatalytic performance. J. Nanosci. Nanotechnol. 2017;17:1942–1949. doi: 10.1166/jnn.2017.12870. DOI
Méndez-Medrano M. G. Kowalska E. Lehoux A. Herissan A. Ohtani B. Bahena D. Briois V. Colbeau-Justin C. Rodríguez-López J. L. Remita H. Surface modification of TiO2 with Ag nanoparticles and CuO nanoclusters for application in photocatalysis. J. Phys. Chem. C. 2016;120:5143–5154. doi: 10.1021/acs.jpcc.5b10703. DOI
Chen K. Feng X. Tian H. Li Y. Xie K. Hu R. Cai Y. Gu H. Silver-decorated titanium dioxide nanotube arrays with improved photocatalytic activity for visible light irradiation. J. Mater. Res. 2014;29:1302–1308. doi: 10.1557/jmr.2014.116. DOI
Roca Jalil M. E. Baschini M. Sapag K. Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Appl. Clay Sci. 2015;114:69–76. doi: 10.1016/j.clay.2015.05.010. DOI
Eythorsdottir A. Omarsdottir S. Einarsson H. Antimicrobial activity of marine bacterial symbionts retrieved from shallow water hydrothermal vents. Mar. Biotechnol. 2016;18:293–300. doi: 10.1007/s10126-016-9695-7. PubMed DOI
Gurunathan S. Umashankar V. Murugesan S. Dhamotharan R. 16s rDNA based molecular identification of Bacteriocin-like inhibitory substance (BLIS/BIS) producing indigenous phytopathogenic bacteria isolated from various diseased plant materials. Int. J. Curr. Sci. 2014;11:105–119.
Duan Y. Zhang M. Wang L. Wang F. Yang L. Li X. Wang C. Plasmonic Ag-TiO2-x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: The role of oxygen vacancies. Appl. Catal., B. 2017;204:67–77. doi: 10.1016/j.apcatb.2016.11.023. DOI
Kamat P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B. 2002;106:7729–7744. doi: 10.1021/jp0209289. DOI
Albiter E. Valenzuela M. A. Alfaro S. Valverde-Aguilar G. Martínez-Pallares F. M. Photocatalytic deposition of Ag nanoparticles on TiO2: Metal precursor effect on the structural and photoactivity properties. J. Saudi Chem. Soc. 2015;19:563–573. doi: 10.1016/j.jscs.2015.05.009. DOI
Koo Y. Littlejohn G. Collins B. Yun Y. Shanov V. N. Schulz M. Pai D. Sankar J. Synthesis and characterization of Ag-TiO2-CNT nanoparticle composites with high photocatalytic activity under artificial light. Composites, Part B. 2014;57:105–111. doi: 10.1016/j.compositesb.2013.09.004. DOI
Lim S. P. Pandikumar A. Huang N. M. Lim H. N. Enhanced photovoltaic performance of silver@titania plasmonic photoanode in dye-sensitized solar cells. RSC Adv. 2014;4:38111–38118. doi: 10.1039/C4RA05689B. DOI
Wei N. Cui H. Song Q. Zhang L. Song X. Wang K. Zhang Y. Li J. Wen J. Tian J. Ag2O nanoparticle/TiO2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation. Appl. Catal., B. 2016;198:83–90. doi: 10.1016/j.apcatb.2016.05.040. DOI
Jiang Z. Wei W. Mao D. Chen C. Shi Y. Lv X. Xie J. Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity. Nanoscale. 2015;7:784–797. doi: 10.1039/C4NR05963H. PubMed DOI
Paul T. Miller P. L. Strathmann T. J. Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. Environ. Sci. Technol. 2007;41:4720–4727. doi: 10.1021/es070097q. PubMed DOI
Tang Y. Sun H. Shang Y. Zeng S. Qin Z. Yin S. Li J. Liang S. Lu G. Liu Z. Spiky nanohybrids of titanium dioxide/gold nanoparticles for enhanced photocatalytic degradation and anti-bacterial property. J. Colloid Interface Sci. 2019;535:516–523. doi: 10.1016/j.jcis.2018.10.020. PubMed DOI
Liu Z. Ma Z. Ag-SrTiO3/TiO2 composite nanostructures with enhanced photocatalytic activity. Mater. Res. Bull. 2019;118:110492. doi: 10.1016/j.materresbull.2019.110492. DOI
Durán-Álvarez J. C. Avella E. Ramírez-Zamora R. M. Zanella R. Photocatalytic degradation of ciprofloxacin using mono-(Au, Ag and Cu) and bi-(Au-Ag and Au-Cu) metallic nanoparticles supported on TiO2 under UV-C and simulated sunlight. Catal. Today. 2016;266:175–187. doi: 10.1016/j.cattod.2015.07.033. DOI
Salazar H. Martins P. M. Santos B. Fernandes M. M. Reizabal A. Sebastián V. Botelho G. Tavares C. J. Vilas-Vilela J. L. Lanceros-Mendez S. Photocatalytic and antimicrobial multifunctional nanocomposite membranes for emerging pollutants water treatment applications. Chemosphere. 2020;250:126299. doi: 10.1016/j.chemosphere.2020.126299. PubMed DOI
Lin Z. Lu Y. Huang J. A hierarchical Ag2O-nanoparticle/TiO2-nanotube composite derived from natural cellulose substance with enhanced photocatalytic performance. Cellulose. 2019;26:6683–6700. doi: 10.1007/s10570-019-02573-z. DOI
Ali T. Ahmed A. Alam U. Uddin I. Tripathi P. Muneer M. Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 2018;212:325–335. doi: 10.1016/j.matchemphys.2018.03.052. DOI
Kaur A. Anderson W. A. Tanvir S. Kansal S. K. Solar light active silver/iron oxide/zinc oxide heterostructure for photodegradation of ciprofloxacin, transformation products and antibacterial activity. J. Colloid Interface Sci. 2019;557:236–253. doi: 10.1016/j.jcis.2019.09.017. PubMed DOI
Xu J. Liu Y. Zhao Y. Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays. Beilstein J. Nanotechnol. 2020;11:717–728. doi: 10.3762/bjnano.11.59. PubMed DOI PMC
Li W. Seal S. Megan E. Ramsdell J. Scammon K. Lelong G. Lachal L. Richardson K. A. Physical and optical properties of sol-gel nano-silver doped silica film on glass substrate as a function of heat-treatment temperature. J. Appl. Phys. 2003;93:9553–9561. doi: 10.1063/1.1571215. DOI
Ulyankina A. Molodtsova T. Gorshenkov M. Leontyev I. Zhigunov D. Konstantinova E. Lastovina T. Tolasz J. Henych J. Licciardello N. Cuniberti G. Smirnova N. Photocatalytic degradation of ciprofloxacin in water at nano-ZnO prepared by pulse alternating current electrochemical synthesis. J. Water Process. Eng. 2021;40:101809. doi: 10.1016/j.jwpe.2020.101809. DOI
Tobaldi D. M. Pullar R. C. Seabra M. P. Labrincha J. A. Fully quantitative X-ray characterisation of Evonik Aeroxide TiO2 P25®. Mater. Lett. 2014;122:345–347. doi: 10.1016/j.matlet.2014.02.055. DOI
Amano F. Nakata M. Yamamoto A. Tanaka T. Rutile titanium dioxide prepared by hydrogen reduction of Degussa P25 for highly efficient photocatalytic hydrogen evolution. Catal. Sci. Technol. 2016;6:5693–5699. doi: 10.1039/C6CY00296J. DOI
Hurum D. C. Agrios A. G. Gray K. A. Rajh T. Thurnauer M. C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B. 2003;107:4545–4549. doi: 10.1021/jp0273934. DOI
Gong P. Li H. He X. Wang K. Hu J. Tan W. Zhang S. Yang X. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology. 2007;18:285604. doi: 10.1088/0957-4484/18/28/285604. DOI
Svoboda L. Bednář J. Dvorský R. Rybková Z. Malachová K. Henych J. Matýsek D. Němečková Z. Novel synthesis of Ag@AgCl/ZnO by different radiation sources including radioactive isotope 60Co: Physicochemical and antimicrobial study. Appl. Surf. Sci. 2020;529:147098. doi: 10.1016/j.apsusc.2020.147098. DOI