• This record comes from PubMed

Human forager response to abrupt climate change at 8.2 ka on the Atlantic coast of Europe

. 2022 Apr 20 ; 12 (1) : 6481. [epub] 20220420

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
SUBSILIENCE ERC-CoG project (grant agreement No. 818299) European Research Council - International

Links

PubMed 35444222
PubMed Central PMC9021199
DOI 10.1038/s41598-022-10135-w
PII: 10.1038/s41598-022-10135-w
Knihovny.cz E-resources

The cooling and drying associated with the so-called '8.2 ka event' have long been hypothesized as having sweeping implications for human societies in the Early Holocene, including some of the last Mesolithic hunter-gatherers in Atlantic Europe. Nevertheless, detailed 'on-site' records with which the impacts of broader climate changes on human-relevant environments can be explored have been lacking. Here, we reconstruct sea surface temperatures (SST) from δ18O values measured on subfossil topshells Phorcus lineatus exploited by the Mesolithic human groups that lived at El Mazo cave (N Spain) between 9 and 7.4 ka. Bayesian modelling of 65 radiocarbon dates, in combination with this δ18O data, provide a high-resolution seasonal record of SST, revealing that colder SST during the 8.2 ka event led to changes in the availability of different shellfish species. Intensification in the exploitation of molluscs by humans indicates demographic growth in these Atlantic coastal settings which acted as refugia during this cold event.

See more in PubMed

Carleton C, Collard M. Recent major themes and research areas in the study of human-environmental interaction in prehistory. Environ. Archaeol. 2020;25:114–130. doi: 10.1080/14614103.2018.1560932. DOI

deMenocal PB. Climate and human evolution. Science. 2011;331:540–542. doi: 10.1126/science.1190683. PubMed DOI

Potts R. Evolution and environmental change in early human prehistory. Annu. Rev. Anthropol. 2012;41:151–167. doi: 10.1146/annurev-anthro-092611-145754. DOI

Mayewski PA, et al. Holocene climate variability. Quatern. Res. 2004;62:243–255. doi: 10.1016/j.yqres.2004.07.001. DOI

Rohling EJ, Pälike H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature. 2005;434:975. doi: 10.1038/nature03421. PubMed DOI

Thomas ER, et al. The 8.2ka event from Greenland ice cores. Quat. Sci. Rev. 2007;26:70–81. doi: 10.1016/j.quascirev.2006.07.017. DOI

Lewis CFM, Miller AAL, Levac E, Piper DJW, Sonnichsen GV. Lake agassiz outburst age and routing by labrador current and the 82 cal ka cold event. Quat. Int. 2012;260:83–97. doi: 10.1016/j.quaint.2011.08.023. DOI

Mary Y, et al. Changes in Holocene meridional circulation and poleward Atlantic flow: The Bay of Biscay as a nodal point. Clim. Past. 2017;13:201–216. doi: 10.5194/cp-13-201-2017. DOI

Prasad S, Witt A, Kienel U, Dulski P, Bauer E, Yancheva G. The 8.2 ka event: Evidence for seasonal differences and the rate of climate change in western Europe. Glob. Planet. Change. 2009;67:218–226. doi: 10.1016/j.gloplacha.2009.03.011. DOI

Seppä H, et al. Spatial structure of the 8200 cal yr BP event in Northern Europe. Clim. Past Discuss. 2007;3:165–195.

Alley RB, Ágústsdóttir AM. The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quatern. Sci. Rev. 2005;24:1123–1149. doi: 10.1016/j.quascirev.2004.12.004. DOI

Morrill C, Jacobsen RM. How widespread were climate anomalies 8200 years ago? Geophys. Res. Lett. 2005;32:2. doi: 10.1029/2005GL023536. DOI

Dixit Y, Hodell DA, Sinha R, Petrie CA. Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P. Earth Planet. Sci. Lett. 2014;391:16–23. doi: 10.1016/j.epsl.2014.01.026. DOI

Bustamante MG, et al. Holocene changes in monsoon precipitation in the Andes of NE Peru based on δ18O speleothem records. Quatern. Sci. Rev. 2016;146:274–287. doi: 10.1016/j.quascirev.2016.05.023. DOI

Roffet-Salque M, et al. Evidence for the impact of the 8.2-kyBP climate event on Near Eastern early farmers. Proc. Natl. Acad. Sci. 2018;115:8705–8709. doi: 10.1073/pnas.1803607115. PubMed DOI PMC

Wicks K, Mithen S. The impact of the abrupt 8.2 ka cold event on the Mesolithic population of western Scotland: A Bayesian chronological analysis using ‘activity events’ as a population proxy. J. Archaeol. Sci. 2014;45:240–269. doi: 10.1016/j.jas.2014.02.003. DOI

van der Plicht J, Akkermans PMMG, Nieuwenhuyse O, Kaneda A, Russell A. Tell Sabi Abyad, Syria: Radiocarbon chronology, cultural change, and the 8.2 ka event. Radiocarbon. 2011;53:229–243. doi: 10.1017/S0033822200056514. DOI

Vermeersch PM, Linseele V, Marinova E, Van Neer W, Moeyersons J, Rethemeyer J. Early and middle holocene human occupation of the Egyptian Eastern desert: Sodmein cave. Afr. Archaeol. Rev. 2015;32:465–503. doi: 10.1007/s10437-015-9195-6. DOI

Gutiérrez-Zugasti I, Andersen SH, Araújo AC, Dupont C, Milner N, Monge-Soares AM. Shell midden research in Atlantic Europe: State of the art, research problems and perspectives for the future. Quatern. Int. 2011;239:70–85. doi: 10.1016/j.quaint.2011.02.031. DOI

Bicho N, Umbelino C, Detry C, Pereira T. The emergence of Muge Mesolithic shell middens in central Portugal and the 8200 cal yr BP cold event. J. Island Coast. Archaeol. 2010;5:86–104. doi: 10.1080/15564891003638184. DOI

Mannino MA, Spiro BF, Thomas KD. Sampling shells for seasonality: oxygen isotope analysis on shell carbonates of the inter-tidal gastropod Monodonta lineata (da Costa) from populations across its modern range and from a Mesolithic site in southern Britain. J. Archaeol. Sci. 2003;30:667–679. doi: 10.1016/S0305-4403(02)00238-8. DOI

García-Escárzaga A, et al. Stable oxygen isotope analysis of Phorcus lineatus (da Costa, 1778) as a proxy for foraging seasonality during the Mesolithic in northern Iberia. Archaeol. Anthropol. Sci. 2019;11:5631–5644. doi: 10.1007/s12520-019-00880-x. DOI

Crisp D. The effects of the severe winter of 1962–63 on marine life in Britain. J. Anim. Ecol. 1964;33:165–210. doi: 10.2307/2355. DOI

Mieszkowska N, Hawkins S, Burrows M, Kendall M. Long-term changes in the geographic distribution and population structures of Osilinus lineatus (Gastropoda: Trochidae) in Britain and Ireland. J. Mar. Biol. Assoc. U.K. 2007;87:537–545. doi: 10.1017/S0025315407053799. DOI

Hawkins SJ, et al. Complex interactions in a rapidly changing world: Responses of rocky shore communities to recent climate change. Clim. Res. 2008;37:123–133. doi: 10.3354/cr00768. DOI

Gutiérrez-Zugasti I, Cuenca-Solana D. Biostratigraphy of shells and climate changes in the Cantabrian region (northern Spain) during the Pleistocene-Holocene transition. In: Archaeomalacology Shells in the Arcaheological Record. British Archaeological Reports International Series 2666 (eds Szabó K, Dupont C, Dimitrijevic V, Gómez-Castélum L, Serrand N). Archaeopress (2014).

Thomas KD. Molluscs emergent, Part I: Themes and trends in the scientific investigation of mollusc shells as resources for archaeological research. J. Archaeol. Sci. 2015;56:133–140. doi: 10.1016/j.jas.2015.01.024. DOI

García-Escárzaga A, et al. Bayesian estimates of marine radiocarbon reservoir effect in northern Iberia during Early and Middle Holocene. Quatern. Geochronol. 2022;67:101232. doi: 10.1016/j.quageo.2021.101232. DOI

Andrus CFT. Shell midden sclerochronology. Quatern. Sci. Rev. 2011;30:2892–2905. doi: 10.1016/j.quascirev.2011.07.016. DOI

Wang T, Surge D, Mithen S. Seasonal temperature variability of the Neoglacial (3300–2500 BP) and Roman Warm Period (2500–1600 BP) reconstructed from oxygen isotope ratios of limpet shells (Patella vulgata), Northwest Scotland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012;317–318:104–113. doi: 10.1016/j.palaeo.2011.12.016. DOI

Gutiérrez-Zugasti I, García-Escárzaga A, Martín-Chivelet J, González-Morales MR. Determination of sea surface temperatures using oxygen isotope ratios from Phorcus lineatus (Da Costa, 1778) in northern Spain: Implications for paleoclimate and archaeological studies. Holocene. 2015;25:1002–1014. doi: 10.1177/0959683615574892. DOI

García-Escárzaga A, Gutiérrez-Zugasti I, Schöne BR, Cobo A, Martín-Chivelet J, González-Morales MR. Growth patterns of the topshell Phorcus lineatus (da Costa, 1778) in northern Iberia deduced from shell sclerochronology. Chem. Geol. 2019;526:49–61. doi: 10.1016/j.chemgeo.2018.03.017. DOI

Bronk RC. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51:337–360. doi: 10.1017/S0033822200033865. DOI

Bronk RC. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon. 2009;51:1023–1045. doi: 10.1017/S0033822200034093. DOI

Reimer PJ, et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP) Radiocarbon. 2020;62:725–757. doi: 10.1017/RDC.2020.41. DOI

Heaton TJ, et al. Marine20-the marine radiocarbon age calibration curve (0–55,000 cal BP) Radiocarbon. 2020;62:779–820. doi: 10.1017/RDC.2020.68. DOI

Bailey GN, Craighead AS. Late Pleistocene and Holocene coastal paleoeconomies: A reconsideration of the molluscan evidence from Northern Spain. Geoarchaeol. Int. J. 2003;18:175–204. doi: 10.1002/gea.10057. DOI

Nuñez S. Dinámicas socio-ecológicas, resiliencia y vulnerabilidad en un paisaje atlántico montañoso: la región cantábrica durante el Holoceno. Unpublished PhD dissertation, Universidad de Cantabria (2018).

Rasmussen SO, et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 2006;111:D06102. doi: 10.1029/2005JD006079. DOI

Ellison CR, Chapman MR, Hall IR. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science. 2006;312:1929–1932. doi: 10.1126/science.1127213. PubMed DOI

LeGrande A, et al. Consistent simulations of multiple proxy responses to an abrupt climate change event. Proc. Natl. Acad. Sci. U.S.A. 2006;103:837–842. doi: 10.1073/pnas.0510095103. PubMed DOI PMC

Domínguez-Villar D, et al. Oxygen isotope precipitation anomaly in the North Atlantic region during the 8.2 ka event. Geology. 2009;37:1095–1098. doi: 10.1130/G30393A.1. DOI

Lorenz SJ, Kim J-H, Rimbu N, Schneider RR, Lohmann G. Orbitally driven insolation forcing on Holocene climate trends: Evidence from alkenone data and climate modeling. Paleoceanography. 2006;21:2. doi: 10.1029/2005PA001152. DOI

Gutiérrez-Zugasti I. Coastal resource intensification across the Pleistocene-Holocene transition in Northern Spain: Evidence from shell size and age distributions of marine gastropods. Quatern. Int. 2011;244:54–66. doi: 10.1016/j.quaint.2011.04.040. DOI

Marín-Arroyo AB. Human response to Holocene warming on the Cantabrian Coast (northern Spain): An unexpected outcome. Quatern. Sci. Rev. 2013;81:1–11. doi: 10.1016/j.quascirev.2013.09.006. DOI

Muñoz-Sobrino C, Ramil-Rego P, Gómez-Orellana L, Díaz Varela RA. Palynological data on major Holocene climatic events in NW Iberia. Boreas. 2005;34:381–400. doi: 10.1080/03009480510013006. DOI

Moreno A, et al. Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula) J. Paleolimnol. 2011;46:327–349. doi: 10.1007/s10933-009-9387-7. DOI

Smith AC, Wynn PM, Barker PA, Leng MJ, Noble SR, Tych W. North Atlantic forcing of moisture delivery to Europe throughout the Holocene. Sci. Rep. 2016;6:24745. doi: 10.1038/srep24745. PubMed DOI PMC

Rossi C, Bajo P, Lozano RP, Hellstrom J. Younger Dryas to Early Holocene paleoclimate in Cantabria (N Spain): Constraints from speleothem Mg, annual fluorescence banding and stable isotope records. Quatern. Sci. Rev. 2018;192:71–85. doi: 10.1016/j.quascirev.2018.05.025. DOI

Hald M, et al. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quatern. Sci. Rev. 2007;26:3423–3440. doi: 10.1016/j.quascirev.2007.10.005. DOI

Matero ISO, Gregoire LJ, Ivanovic RF, Tindall JC, Haywood AM. The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth Planet. Sci. Lett. 2017;473:205–214. doi: 10.1016/j.epsl.2017.06.011. DOI

Griffiths S, Robinson E. The 8.2 ka BP Holocene climate change event and human population resilience in northwest Atlantic Europe. Quatern. Int. 2018;465:251–257. doi: 10.1016/j.quaint.2017.10.017. DOI

Alday A, et al. The silence of the layers: Archaeological site visibility in the Pleistocene-Holocene transition at the Ebro Basin. Quatern. Sci. Rev. 2018;184:85–106. doi: 10.1016/j.quascirev.2017.11.006. DOI

González-Sampériz P, et al. Patterns of human occupation during the early Holocene in the Central Ebro Basin (NE Spain) in response to the 8.2 ka climatic event. Quatern. Res. 2009;71:121–132. doi: 10.1016/j.yqres.2008.10.006. DOI

García-Martínez de Lagrán I, et al. 8.2 ka BP paleoclimatic event and the Ebro Valley Mesolithic groups: Preliminary data from Artusia rock shelter (Unzué, Navarra, Spain) Quatern. Int. 2016;403:151–173. doi: 10.1016/j.quaint.2015.06.050. DOI

Neira Campos A, Fuertes Prieto N, Herrero AD. The Mesolithic with geometrics south of the ‘Picos de Europa’ (Northern Iberian Peninsula): The main characteristics of the lithic industry and raw material procurement. Quatern. Int. 2016;402:90–99. doi: 10.1016/j.quaint.2015.10.065. DOI

Vidal-Encinas, J. M. & Prada-Marcos, M. E. Los hombres mesolíticos de la cueva de La Braña-Arintero (Valdelugueros, León). Jutan de Castillo y León (2010).

Jones JR, Marín-Arroyo AB, Straus LG, Richards MP. Adaptability, resilience and environmental buffering in European Refugia during the Late Pleistocene: Insights from La Riera Cave (Asturias, Cantabria, Spain) Sci. Rep. 2020;10:1217. doi: 10.1038/s41598-020-57715-2. PubMed DOI PMC

Arias Cabal P, Fano Martínez MÁ. Mesolítico Geométrico o Mesolítico con geométricos? El caso de la región Cantábrica. In: Utrilla P, Montes L, editors. El Mesolítico Geométrico en la Península Ibérica. Universidad de Zaragoza; 2009.

Fuertes-Prieto N, Risseto J, Gutiérrez-Zugasti I, Cuenca-Solana D, González-Morales MR. New perspectives on Mesolithic technology in northern Iberia: data from El Mazo shell midden site (Asturias, Spain). In: Foraging Assemblages: Papers Presented at the Ninth International Conference on the Mesolithic in Europe, Belgrade 2015 (eds Boric D, Antonovic D, Mihailovic B) (2020).

Fernández-López de Pablo J, Gutiérrez-Roig M, Gómez-Puche M, McLaughlin R, Silva F, Lozano S. Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia. Nat. Commun. 2019;10:1872. doi: 10.1038/s41467-019-09833-3. PubMed DOI PMC

McLaughlin TR, Gómez-Puche M, Cascalheira J, Bicho N, Fernández-López de Pablo J. Late glacial and early Holocene human demographic responses to climatic and environmental change in Atlantic Iberia. Philos. Trans. R. Soc. B. 2020;376:20190724. doi: 10.1098/rstb.2019.0724. PubMed DOI PMC

Crowther A, et al. Coastal subsistence, maritime trade, and the colonization of small offshore islands in eastern African prehistory. J. Island Coast. Archaeol. 2016;11:211–237. doi: 10.1080/15564894.2016.1188334. DOI

King CL, Millard AR, Gröcke DR, Standen VG, Arriaza BT, Halcrow SE. Marine resource reliance in the human populations of the Atacama Desert, northern Chile—A view from prehistory. Quatern. Sci. Rev. 2018;182:163–174. doi: 10.1016/j.quascirev.2017.12.009. DOI

Caesar L, Rahmstorf S, Robinson A, Feulner G, Saba V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature. 2018;556:191. doi: 10.1038/s41586-018-0006-5. PubMed DOI

Kim ST, O’Neil JR, Hillaire-Marcel C, Mucci A. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta. 2007;71:4704–4715. doi: 10.1016/j.gca.2007.04.019. DOI

Fairbanks RG. A 17.000-year glacio-eustatic sea lever record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature. 1989;342:637–642. doi: 10.1038/342637a0. DOI

Leorri E, Cearreta A, Milne G. Field observations and modelling of Holocene sea-level changes in the southern Bay of Biscay: Implication for understanding current rates of relative sea-level change and vertical land motion along the Atlantic coast of SW Europe. Quatern. Sci. Rev. 2012;42:59–73. doi: 10.1016/j.quascirev.2012.03.014. DOI

Hoffman JS, et al. Linking the 8.2 ka event and its freshwater forcing in the Labrador Sea. Geophys. Res. Lett. 2012;39:2. doi: 10.1029/2012GL053047. DOI

Gutiérrez-Zugasti I. Shell fragmentation as a tool for quantification and identification of taphonomic processes in archaeomalacogical analysis: The case of the Cantabrian Region (Northern Spain) Archaeometry. 2011;53:614–630. doi: 10.1111/j.1475-4754.2010.00561.x. DOI

Gutiérrez ZI. La explotación de moluscos y otros recursos litorales en la región cantábrica durante el Pleistoceno final y el Holoceno inicial. Publican; 2009.

Harris M, Weisler M, Faulkner P. A refined protocol for calculating MNI in archaeological molluscan shell assemblages: A Marshall Islands case study. J. Archaeol. Sci. 2015;57:168–179. doi: 10.1016/j.jas.2015.01.017. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Population genomics of post-glacial western Eurasia

. 2024 Jan ; 625 (7994) : 301-311. [epub] 20240110

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...