Novel Screen-Printed Sensor with Chemically Deposited Boron-Doped Diamond Electrode: Preparation, Characterization, and Application
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-01589S
The Czech Science Foundation
SGSFChT_2022_001
The University of Pardubice
1/0554/20
VEGA
313011ASS8
Operational Program Integrated Infrastructure
PubMed
35448301
PubMed Central
PMC9027657
DOI
10.3390/bios12040241
PII: bios12040241
Knihovny.cz E-resources
- Keywords
- analytical application, boron-doped diamond electrode, characterization, electrochemical properties, lornoxicam, preparation, screen-printed sensor,
- MeSH
- Boron * chemistry MeSH
- Electrodes MeSH
- Electrolysis * MeSH
- Oxidation-Reduction MeSH
- Spectrum Analysis, Raman MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Boron * MeSH
New screen-printed sensor with a boron-doped diamond working electrode (SP/BDDE) was fabricated using a large-area linear antenna microwave chemical deposition vapor system (LA-MWCVD) with a novel precursor composition. It combines the advantages of disposable printed sensors, such as tailored design, low cost, and easy mass production, with excellent electrochemical properties of BDDE, including a wide available potential window, low background currents, chemical resistance, and resistance to passivation. The newly prepared SP/BDDEs were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Their electrochemical properties were investigated by cyclic voltammetry and electrochemical impedance spectroscopy using inner sphere ([Fe(CN)6]4-/3-) and outer sphere ([Ru(NH3)6]2+/3+) redox probes. Moreover, the applicability of these new sensors was verified by analysis of the anti-inflammatory drug lornoxicam in model and pharmaceutical samples. Using optimized differential pulse voltammetry in Britton-Robinson buffer of pH 3, detection limits for lornoxicam were 9 × 10-8 mol L-1. The oxidation mechanism of lornoxicam was investigated using bulk electrolysis and online electrochemical cell with mass spectrometry; nine distinct reaction steps and corresponding products and intermediates were identified.
See more in PubMed
Li M., Li Y.T., Li D.W., Long Y.T. Recent developments and applications of screen-printed electrodes in environmental assays-a review. Anal. Chim. Acta. 2012;734:31–44. doi: 10.1016/j.aca.2012.05.018. PubMed DOI
Taleat Z., Khoshroo A., Mazloum-Ardakani M. Screen-printed electrodes for biosensing: A review (2008–2013) Microchim. Acta. 2014;181:865–891. doi: 10.1007/s00604-014-1181-1. DOI
Barton J., Garcia M.B.G., Santos D.H., Fanjul-Bolado P., Ribotti A., McCaul M., Diamond D., Magni P. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Microchim. Acta. 2016;183:503–517. doi: 10.1007/s00604-015-1651-0. DOI
Costa-Rama E., Fernandez-Abedul M.T. Paper-based screen-printed electrodes: A new generation of low-cost electroanalytical platforms. Biosensors. 2021;11:51. doi: 10.3390/bios11020051. PubMed DOI PMC
Hatamie A., Rahmati R., Rezvani E., Angizi S., Simchi A. Yttrium hexacyanoferrate microflowers on freestanding three-dimensional graphene substrates for ascorbic acid detection. ACS Appl. Nano Mater. 2019;2:2212–2221. doi: 10.1021/acsanm.9b00167. DOI
Saenchoopa A., Klangphukhiew S., Somsub R., Talodthaisong C., Patramanon R., Daduang J., Daduang S., Kulchat S. A disposable electrochemical biosensor based on screen-printed carbon electrodes modified with silver nanowires/hpmc/chitosan/urease for the detection of mercury (ii) in water. Biosensors. 2021;11:351. doi: 10.3390/bios11100351. PubMed DOI PMC
Antuna-Jimenez D., Gonzalez-Garcia M.B., Hernandez-Santos D., Fanjul-Bolado P. Screen-printed electrodes modified with metal nanoparticles for small molecule sensing. Biosensors. 2020;10:9. doi: 10.3390/bios10020009. PubMed DOI PMC
Tyszczuk-Rotko K., Kozak J., Czech B. Screen-printed voltammetric sensors—Tools for environmental water monitoring of painkillers. Sensors. 2022;22:2437. doi: 10.3390/s22072437. PubMed DOI PMC
Beitollahi H., Mohammadi S.Z., Safaei M., Tajik S. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: A review. Anal. Met. 2020;12:1547–1560. doi: 10.1039/C9AY02598G. DOI
Pohanka M. Screen printed electrodes in biosensors and bioassays. A review. Int. J. Electrochem. Sci. 2020;15:11024–11035. doi: 10.20964/2020.11.19. DOI
Stankovic D.M., Milanovic Z., Svorc L., Stankovic V., Jankovic D., Mirkovic M., Duric S.V. Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product. Diam. Relat. Mater. 2021;113:108277. doi: 10.1016/j.diamond.2021.108277. DOI
Patel K., Hashimoto K., Fujishima A. Application of boron-doped cvd-diamond film to photoelectrode. Denki Kagaku. 1992;60:659. doi: 10.5796/electrochemistry.60.659. DOI
Swain G.M., Ramesham R. The electrochemical activity of boron-doped polycrystalline diamond thin-film electrodes. Anal. Chem. 1993;65:345–351. doi: 10.1021/ac00052a007. DOI
Swain G.M., Anderson A.B., Angus J.C. Applications of diamond thin films in electrochemistry. MRS Bull. 1998;23:56–60. doi: 10.1557/S0883769400029389. DOI
Fujishima A., Einaga Y., Rao T.N., Tryk D.A. Diamond Electrochemistry. Elsevier; Amsterdam, The Netherlands: 2005.
Luong J.H.T., Male K.B., Glennon J.D. Boron-doped diamond electrode: Synthesis, characterization, functionalization and analytical applications. Analyst. 2009;134:1965–1979. doi: 10.1039/b910206j. PubMed DOI
Schwarzova-Peckova K., Vosahlova J., Barek J., Sloufova I., Pavlova E., Petrak V., Zavazalova J. Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes. Electrochim. Acta. 2017;243:170–182. doi: 10.1016/j.electacta.2017.05.006. DOI
Selesovska R., Krankova B., Stepankova M., Martinkova P., Janikova L., Chylkova J., Vojs M. Influence of boron content on electrochemical properties of boron-doped diamond electrodes and their utilization for leucovorin determination. J. Electroanal. Chem. 2018;821:2–9. doi: 10.1016/j.jelechem.2018.02.007. DOI
Yang N.J., Yu S.Y., Macpherson J.V., Einaga Y., Zhao H.Y., Zhao G.H., Swain G.M., Jiang X. Conductive diamond: Synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 2019;48:157–204. doi: 10.1039/C7CS00757D. PubMed DOI
Barek J., Fischer J., Navratil T., Peckova K., Yosypchuk B., Zima J. Nontraditional electrode materials in environmental analysis of biologically active organic compounds. Electroanalysis. 2007;19:2003–2014. doi: 10.1002/elan.200703918. DOI
Peckova K., Musilova J., Barek J. Boron-doped diamond film electrodes—New tool for voltammetric determination of organic substances. Crit. Rev. Anal. Chem. 2009;39:148–172. doi: 10.1080/10408340903011812. DOI
Peckova K., Barek J. Boron doped diamond microelectrodes and microelectrode arrays in organic electrochemistry. Curr. Org. Chem. 2011;15:3014–3028. doi: 10.2174/138527211798357164. DOI
Muzyka K., Sun J., Fereja T.H., Lan Y., Zhang W., Xu G. Boron-doped diamond: Current progress and challenges in view of electroanalytical applications. Anal. Met. 2019;11:397–414. doi: 10.1039/C8AY02197J. DOI
Baluchova S., Danhel A., Dejmkova H., Ostatna V., Fojta M., Schwarzova-Peckova K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules—A review. Anal. Chim. Acta. 2019;1077:30–66. doi: 10.1016/j.aca.2019.05.041. PubMed DOI
Toghill K.E., Compton R.G. Metal nanoparticle modified boron doped diamond electrodes for use in electroanalysis. Electroanalysis. 2010;22:1947–1956. doi: 10.1002/elan.201000072. DOI
Svitkova J., Ignat T., Svorc L., Labuda J., Barek J. Chemical modification of boron-doped diamond electrodes for applications to biosensors and biosensing. Crit. Rev. Anal. Chem. 2016;46:248–256. doi: 10.1080/10408347.2015.1082125. PubMed DOI
Matvieiev O., Selesovska R., Janikova L. Modification of boron-doped diamond electrode and its application. Sci. Pap. Univ. Pardubic. Ser. A. 2021;27:73–102.
Couto R.A.S., Lima J.L.F.C., Quinaz M.B. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta. 2016;146:801–814. doi: 10.1016/j.talanta.2015.06.011. PubMed DOI
Camargo J.R., Orzari L.O., Araujo D.A.G., de Oliveira P.R., Kalinke C., Rocha D.P., dos Santos A.L., Takeuchi R.M., Munoz R.A.A., Bonacin J.A., et al. Development of conductive inks for electrochemical sensors and biosensors. Microchem. J. 2021;164:105998. doi: 10.1016/j.microc.2021.105998. DOI
Bounegru A.V., Apetrei C. Carbonaceous nanomaterials employed in the development of electrochemical sensors based on screen-printing technique—A review. Catalysts. 2020;10:680. doi: 10.3390/catal10060680. DOI
Hatala M., Gemeiner P., Lorencova L., Mikula M., Hvojnik M., Pavlickova M., Haz A., Kosnac D., Bertok T., Tkac J. Screen-printed conductive carbon layers for dye-sensitized solar cells and electrochemical detection of dopamine. Chem. Pap. 2021;75:3817–3829. doi: 10.1007/s11696-021-01601-2. DOI
Arumugasamy S.K., Govindaraju S., Yun K. Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Appl. Surf. Sci. 2020;508:145294. doi: 10.1016/j.apsusc.2020.145294. DOI
Rashid J.I.A., Kannan V., Ahmad M.H., Mon A.A., Taufik S., Miskon A., Ong K.K., Yusof N.A. An electrochemical sensor based on gold nanoparticles-functionalized reduced graphene oxide screen printed electrode for the detection of pyocyanin biomarker in pseudomonas aeruginosa infection. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;120:111625. doi: 10.1016/j.msec.2020.111625. PubMed DOI
Nguyen T.N.H., Nolan J.K., Park H., Lam S., Fattah M., Page J.C., Joe H.E., Jun M.B.G., Lee H., Kim S.J., et al. Facile fabrication of flexible glutamate biosensor using direct writing of platinum nanoparticle-based nanocomposite ink. Biosens. Bioelectron. 2019;131:257–266. doi: 10.1016/j.bios.2019.01.051. PubMed DOI PMC
Terzi F., Zanfrognini B., Ruggeri S., Dossi N., Casagrande G.M., Piccin E. Amperometric paper sensor based on cu nanoparticles for the determination of carbohydrates. Sensor. Actuat. B Chem. 2017;245:352–358. doi: 10.1016/j.snb.2017.01.064. DOI
Shen J., Dudik L., Liu C.C. An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensor. Actuat. B Chem. 2007;125:106–113. doi: 10.1016/j.snb.2007.01.043. DOI
Raza W., Ahmad K. A highly selective fe@zno modified disposable screen printed electrode based non-enzymatic glucose sensor (spe/fe@zno) Mater. Lett. 2018;212:231–234. doi: 10.1016/j.matlet.2017.10.100. DOI
Sljukic B.R., Kadara R.O., Banks C.E. Disposable manganese oxide screen printed electrodes for electroanalytical sensing. Anal. Met. 2011;3:105–109. doi: 10.1039/C0AY00444H. PubMed DOI
Skopalova J., Bartak P., Bednar P., Tomkova H., Ingr T., Lorencova I., Kucerova P., Papousek R., Borovcova L., Lemr K. Carbon fiber brush electrode as a novel substrate for atmospheric solids analysis probe (asap) mass spectrometry: Electrochemical oxidation of brominated phenols. Anal. Chim. Acta. 2018;999:60–68. doi: 10.1016/j.aca.2017.11.024. PubMed DOI
Meloun M., Militky J., Forina M. Chemometrics for Analytical Chemistry, Volume 1: Pc-Aided Statistical Data Analysis, Volume 2: Pc-Aided Regression and Related Methods. Ellis Horwood; Chichester, UK: 1992. p. 175.
Meloun M., Militky J. Statistical Analysis of Experimental Data. Academia; Prague, Czech Republic: 2006.
Mortet V., Taylor A., Zivcova Z.V., Machon D., Frank O., Hubik P., Tremouilles D., Kavan L. Analysis of heavily boron-doped diamond raman spectrum. Diam. Relat. Mater. 2018;88:163–166. doi: 10.1016/j.diamond.2018.07.013. DOI
Moreira J.C., Barek J. Analysis of carcinogenic nitrated polycyclic aromatic-hydrocarbons—A review. Quim. Nova. 1995;18:362–367.
Pruvost F., Deneuville A. Analysis of the fano in diamond. Diam. Relat. Mater. 2001;10:531–535. doi: 10.1016/S0925-9635(00)00378-2. DOI
Marton M., Vojs M., Zdravecka E., Himmerlich M., Haensel T., Krischok S., Kotlar M., Michniak P., Vesely M., Redhammer R. Raman spectroscopy of amorphous carbon prepared by pulsed arc discharge in various gas mixtures. J. Spectrosc. 2013;2013:467079. doi: 10.1155/2013/467079. DOI
Bernard M., Deneuville A., Muret P. Non-destructive determination of the boron concentration of heavily doped metallic diamond thin films from raman spectroscopy. Diam. Relat. Mater. 2004;13:282–286. doi: 10.1016/j.diamond.2003.10.051. DOI
Alehashem S., Chambers F., Strojek J.W., Swain G.M., Ramesham R. Cyclic voltammetric studies of charge-transfer reactions at highly boron-doped polycrystalline diamond thin-film electrodes. Anal. Chem. 1995;67:2812–2821. doi: 10.1021/ac00113a014. DOI
Strojek J.W., Granger M.C., Swain G.M., Dallas T., Holtz M.W. Enhanced signal-to-background ratios in voltammetric measurements made at diamond thin-film electrochemical interfaces. Anal. Chem. 1996;68:2031–2037. doi: 10.1021/ac9506847. PubMed DOI
Ferro S., De Battisti A. Electron transfer reactions at conductive diamond electrodes. Electrochim. Acta. 2002;47:1641–1649. doi: 10.1016/S0013-4686(01)00898-2. DOI
Granger M.C., Swain G.M. The influence of surface interactions on the reversibility of ferri/ferrocyanide at boron--doped diamond thin--film electrodes. J. Electrochem. Soc. 1999;146:4551–4558. doi: 10.1149/1.1392673. DOI
Friso F., Trasatti S. Electron transfer at boron-doped diamond electrodes. Comparison with pt, au and ruo2. Collect. Czech. Chem. Commun. 2003;68:1621–1635. doi: 10.1135/cccc20031621. DOI
Bard A.J. Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: The challenge. J. Am. Chem. Soc. 2010;132:7559–7567. doi: 10.1021/ja101578m. PubMed DOI
Macpherson J.V. A practical guide to using boron doped diamond in electrochemical research. Phys. Chem. Chem. Phys. 2015;17:2935–2949. doi: 10.1039/C4CP04022H. PubMed DOI
Nicholson R.S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965;37:1351–1355. doi: 10.1021/ac60230a016. DOI
Fischer A.E., Show Y., Swain G.M. Electrochemical performance of diamond thin-film electrodes from different commercial sources. Anal. Chem. 2004;76:2553–2560. doi: 10.1021/ac035214o. PubMed DOI
Gerhardt G., Adams R.N. Determination of diffusion coefficients by flow injection analysis. Anal. Chem. 1982;54:2618–2620. doi: 10.1021/ac00251a054. DOI
Kovach P.M., Deakin M.R., Wightman R.M. Electrochemistry at partially blocked carbon-fiber microcylinder electrodes. J. Phys. Chem. 1986;90:4612–4617. doi: 10.1021/j100410a028. DOI
Oliveira S.C.B., Oliveira-Brett A.M. Voltammetric and electrochemical impedance spectroscopy characterization of a cathodic and anodic pre-treated boron doped diamond electrode. Electrochim. Acta. 2010;55:4599–4605. doi: 10.1016/j.electacta.2010.03.016. DOI
Radhofer-Welte S., Rabasseda X. Lornoxicam, a new potent nsaid with an improved tolerability profile. Drugs Today. 2000;36:55–76. doi: 10.1358/dot.2000.36.1.566627. PubMed DOI
Helmy H.S., El-Sahar A.E., Sayed R.H., Shamma R.N., Salama A.H., Elbaz E.M. Therapeutic effects of lornoxicam-loaded nanomicellar formula in experimental models of rheumatoid arthritis. Int. J. Nanomed. 2017;12:7015–7023. doi: 10.2147/IJN.S147738. PubMed DOI PMC
Mentes O., Bagci M. Postoperative pain management after inguinal hernia repair: Lornoxicam versus tramadol. Hernia. 2009;13:427–430. doi: 10.1007/s10029-009-0486-1. PubMed DOI
Torriero A.A.J., Tonn C.E., Sereno L., Raba J. Electrooxidation mechanism of non-steroidal anti-inflammatory drug piroxicam at glassy carbon electrode. J. Electroanal. Chem. 2006;588:218–225. doi: 10.1016/j.jelechem.2005.12.023. DOI
Selesovska R., Hlobenova F., Skopalova J., Cankar P., Janikova L., Chylkova J. Electrochemical oxidation of anti-inflammatory drug meloxicam and its determination using boron doped diamond electrode. J. Electroanal. Chem. 2020;858 doi: 10.1016/j.jelechem.2019.113758. DOI
Bozal B., Uslu B. Applications of carbon based electrodes for voltammetric determination of lornoxicam in pharmaceutical dosage form and human serum. Comb. Chem. High Throughput Screen. 2010;13:599–609. doi: 10.2174/1386207311004070599. PubMed DOI