• This record comes from PubMed

Novel Screen-Printed Sensor with Chemically Deposited Boron-Doped Diamond Electrode: Preparation, Characterization, and Application

. 2022 Apr 13 ; 12 (4) : . [epub] 20220413

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-01589S The Czech Science Foundation
SGSFChT_2022_001 The University of Pardubice
1/0554/20 VEGA
313011ASS8 Operational Program Integrated Infrastructure

New screen-printed sensor with a boron-doped diamond working electrode (SP/BDDE) was fabricated using a large-area linear antenna microwave chemical deposition vapor system (LA-MWCVD) with a novel precursor composition. It combines the advantages of disposable printed sensors, such as tailored design, low cost, and easy mass production, with excellent electrochemical properties of BDDE, including a wide available potential window, low background currents, chemical resistance, and resistance to passivation. The newly prepared SP/BDDEs were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Their electrochemical properties were investigated by cyclic voltammetry and electrochemical impedance spectroscopy using inner sphere ([Fe(CN)6]4-/3-) and outer sphere ([Ru(NH3)6]2+/3+) redox probes. Moreover, the applicability of these new sensors was verified by analysis of the anti-inflammatory drug lornoxicam in model and pharmaceutical samples. Using optimized differential pulse voltammetry in Britton-Robinson buffer of pH 3, detection limits for lornoxicam were 9 × 10-8 mol L-1. The oxidation mechanism of lornoxicam was investigated using bulk electrolysis and online electrochemical cell with mass spectrometry; nine distinct reaction steps and corresponding products and intermediates were identified.

See more in PubMed

Li M., Li Y.T., Li D.W., Long Y.T. Recent developments and applications of screen-printed electrodes in environmental assays-a review. Anal. Chim. Acta. 2012;734:31–44. doi: 10.1016/j.aca.2012.05.018. PubMed DOI

Taleat Z., Khoshroo A., Mazloum-Ardakani M. Screen-printed electrodes for biosensing: A review (2008–2013) Microchim. Acta. 2014;181:865–891. doi: 10.1007/s00604-014-1181-1. DOI

Barton J., Garcia M.B.G., Santos D.H., Fanjul-Bolado P., Ribotti A., McCaul M., Diamond D., Magni P. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Microchim. Acta. 2016;183:503–517. doi: 10.1007/s00604-015-1651-0. DOI

Costa-Rama E., Fernandez-Abedul M.T. Paper-based screen-printed electrodes: A new generation of low-cost electroanalytical platforms. Biosensors. 2021;11:51. doi: 10.3390/bios11020051. PubMed DOI PMC

Hatamie A., Rahmati R., Rezvani E., Angizi S., Simchi A. Yttrium hexacyanoferrate microflowers on freestanding three-dimensional graphene substrates for ascorbic acid detection. ACS Appl. Nano Mater. 2019;2:2212–2221. doi: 10.1021/acsanm.9b00167. DOI

Saenchoopa A., Klangphukhiew S., Somsub R., Talodthaisong C., Patramanon R., Daduang J., Daduang S., Kulchat S. A disposable electrochemical biosensor based on screen-printed carbon electrodes modified with silver nanowires/hpmc/chitosan/urease for the detection of mercury (ii) in water. Biosensors. 2021;11:351. doi: 10.3390/bios11100351. PubMed DOI PMC

Antuna-Jimenez D., Gonzalez-Garcia M.B., Hernandez-Santos D., Fanjul-Bolado P. Screen-printed electrodes modified with metal nanoparticles for small molecule sensing. Biosensors. 2020;10:9. doi: 10.3390/bios10020009. PubMed DOI PMC

Tyszczuk-Rotko K., Kozak J., Czech B. Screen-printed voltammetric sensors—Tools for environmental water monitoring of painkillers. Sensors. 2022;22:2437. doi: 10.3390/s22072437. PubMed DOI PMC

Beitollahi H., Mohammadi S.Z., Safaei M., Tajik S. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: A review. Anal. Met. 2020;12:1547–1560. doi: 10.1039/C9AY02598G. DOI

Pohanka M. Screen printed electrodes in biosensors and bioassays. A review. Int. J. Electrochem. Sci. 2020;15:11024–11035. doi: 10.20964/2020.11.19. DOI

Stankovic D.M., Milanovic Z., Svorc L., Stankovic V., Jankovic D., Mirkovic M., Duric S.V. Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product. Diam. Relat. Mater. 2021;113:108277. doi: 10.1016/j.diamond.2021.108277. DOI

Patel K., Hashimoto K., Fujishima A. Application of boron-doped cvd-diamond film to photoelectrode. Denki Kagaku. 1992;60:659. doi: 10.5796/electrochemistry.60.659. DOI

Swain G.M., Ramesham R. The electrochemical activity of boron-doped polycrystalline diamond thin-film electrodes. Anal. Chem. 1993;65:345–351. doi: 10.1021/ac00052a007. DOI

Swain G.M., Anderson A.B., Angus J.C. Applications of diamond thin films in electrochemistry. MRS Bull. 1998;23:56–60. doi: 10.1557/S0883769400029389. DOI

Fujishima A., Einaga Y., Rao T.N., Tryk D.A. Diamond Electrochemistry. Elsevier; Amsterdam, The Netherlands: 2005.

Luong J.H.T., Male K.B., Glennon J.D. Boron-doped diamond electrode: Synthesis, characterization, functionalization and analytical applications. Analyst. 2009;134:1965–1979. doi: 10.1039/b910206j. PubMed DOI

Schwarzova-Peckova K., Vosahlova J., Barek J., Sloufova I., Pavlova E., Petrak V., Zavazalova J. Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes. Electrochim. Acta. 2017;243:170–182. doi: 10.1016/j.electacta.2017.05.006. DOI

Selesovska R., Krankova B., Stepankova M., Martinkova P., Janikova L., Chylkova J., Vojs M. Influence of boron content on electrochemical properties of boron-doped diamond electrodes and their utilization for leucovorin determination. J. Electroanal. Chem. 2018;821:2–9. doi: 10.1016/j.jelechem.2018.02.007. DOI

Yang N.J., Yu S.Y., Macpherson J.V., Einaga Y., Zhao H.Y., Zhao G.H., Swain G.M., Jiang X. Conductive diamond: Synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 2019;48:157–204. doi: 10.1039/C7CS00757D. PubMed DOI

Barek J., Fischer J., Navratil T., Peckova K., Yosypchuk B., Zima J. Nontraditional electrode materials in environmental analysis of biologically active organic compounds. Electroanalysis. 2007;19:2003–2014. doi: 10.1002/elan.200703918. DOI

Peckova K., Musilova J., Barek J. Boron-doped diamond film electrodes—New tool for voltammetric determination of organic substances. Crit. Rev. Anal. Chem. 2009;39:148–172. doi: 10.1080/10408340903011812. DOI

Peckova K., Barek J. Boron doped diamond microelectrodes and microelectrode arrays in organic electrochemistry. Curr. Org. Chem. 2011;15:3014–3028. doi: 10.2174/138527211798357164. DOI

Muzyka K., Sun J., Fereja T.H., Lan Y., Zhang W., Xu G. Boron-doped diamond: Current progress and challenges in view of electroanalytical applications. Anal. Met. 2019;11:397–414. doi: 10.1039/C8AY02197J. DOI

Baluchova S., Danhel A., Dejmkova H., Ostatna V., Fojta M., Schwarzova-Peckova K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules—A review. Anal. Chim. Acta. 2019;1077:30–66. doi: 10.1016/j.aca.2019.05.041. PubMed DOI

Toghill K.E., Compton R.G. Metal nanoparticle modified boron doped diamond electrodes for use in electroanalysis. Electroanalysis. 2010;22:1947–1956. doi: 10.1002/elan.201000072. DOI

Svitkova J., Ignat T., Svorc L., Labuda J., Barek J. Chemical modification of boron-doped diamond electrodes for applications to biosensors and biosensing. Crit. Rev. Anal. Chem. 2016;46:248–256. doi: 10.1080/10408347.2015.1082125. PubMed DOI

Matvieiev O., Selesovska R., Janikova L. Modification of boron-doped diamond electrode and its application. Sci. Pap. Univ. Pardubic. Ser. A. 2021;27:73–102.

Couto R.A.S., Lima J.L.F.C., Quinaz M.B. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta. 2016;146:801–814. doi: 10.1016/j.talanta.2015.06.011. PubMed DOI

Camargo J.R., Orzari L.O., Araujo D.A.G., de Oliveira P.R., Kalinke C., Rocha D.P., dos Santos A.L., Takeuchi R.M., Munoz R.A.A., Bonacin J.A., et al. Development of conductive inks for electrochemical sensors and biosensors. Microchem. J. 2021;164:105998. doi: 10.1016/j.microc.2021.105998. DOI

Bounegru A.V., Apetrei C. Carbonaceous nanomaterials employed in the development of electrochemical sensors based on screen-printing technique—A review. Catalysts. 2020;10:680. doi: 10.3390/catal10060680. DOI

Hatala M., Gemeiner P., Lorencova L., Mikula M., Hvojnik M., Pavlickova M., Haz A., Kosnac D., Bertok T., Tkac J. Screen-printed conductive carbon layers for dye-sensitized solar cells and electrochemical detection of dopamine. Chem. Pap. 2021;75:3817–3829. doi: 10.1007/s11696-021-01601-2. DOI

Arumugasamy S.K., Govindaraju S., Yun K. Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Appl. Surf. Sci. 2020;508:145294. doi: 10.1016/j.apsusc.2020.145294. DOI

Rashid J.I.A., Kannan V., Ahmad M.H., Mon A.A., Taufik S., Miskon A., Ong K.K., Yusof N.A. An electrochemical sensor based on gold nanoparticles-functionalized reduced graphene oxide screen printed electrode for the detection of pyocyanin biomarker in pseudomonas aeruginosa infection. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;120:111625. doi: 10.1016/j.msec.2020.111625. PubMed DOI

Nguyen T.N.H., Nolan J.K., Park H., Lam S., Fattah M., Page J.C., Joe H.E., Jun M.B.G., Lee H., Kim S.J., et al. Facile fabrication of flexible glutamate biosensor using direct writing of platinum nanoparticle-based nanocomposite ink. Biosens. Bioelectron. 2019;131:257–266. doi: 10.1016/j.bios.2019.01.051. PubMed DOI PMC

Terzi F., Zanfrognini B., Ruggeri S., Dossi N., Casagrande G.M., Piccin E. Amperometric paper sensor based on cu nanoparticles for the determination of carbohydrates. Sensor. Actuat. B Chem. 2017;245:352–358. doi: 10.1016/j.snb.2017.01.064. DOI

Shen J., Dudik L., Liu C.C. An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensor. Actuat. B Chem. 2007;125:106–113. doi: 10.1016/j.snb.2007.01.043. DOI

Raza W., Ahmad K. A highly selective fe@zno modified disposable screen printed electrode based non-enzymatic glucose sensor (spe/fe@zno) Mater. Lett. 2018;212:231–234. doi: 10.1016/j.matlet.2017.10.100. DOI

Sljukic B.R., Kadara R.O., Banks C.E. Disposable manganese oxide screen printed electrodes for electroanalytical sensing. Anal. Met. 2011;3:105–109. doi: 10.1039/C0AY00444H. PubMed DOI

Skopalova J., Bartak P., Bednar P., Tomkova H., Ingr T., Lorencova I., Kucerova P., Papousek R., Borovcova L., Lemr K. Carbon fiber brush electrode as a novel substrate for atmospheric solids analysis probe (asap) mass spectrometry: Electrochemical oxidation of brominated phenols. Anal. Chim. Acta. 2018;999:60–68. doi: 10.1016/j.aca.2017.11.024. PubMed DOI

Meloun M., Militky J., Forina M. Chemometrics for Analytical Chemistry, Volume 1: Pc-Aided Statistical Data Analysis, Volume 2: Pc-Aided Regression and Related Methods. Ellis Horwood; Chichester, UK: 1992. p. 175.

Meloun M., Militky J. Statistical Analysis of Experimental Data. Academia; Prague, Czech Republic: 2006.

Mortet V., Taylor A., Zivcova Z.V., Machon D., Frank O., Hubik P., Tremouilles D., Kavan L. Analysis of heavily boron-doped diamond raman spectrum. Diam. Relat. Mater. 2018;88:163–166. doi: 10.1016/j.diamond.2018.07.013. DOI

Moreira J.C., Barek J. Analysis of carcinogenic nitrated polycyclic aromatic-hydrocarbons—A review. Quim. Nova. 1995;18:362–367.

Pruvost F., Deneuville A. Analysis of the fano in diamond. Diam. Relat. Mater. 2001;10:531–535. doi: 10.1016/S0925-9635(00)00378-2. DOI

Marton M., Vojs M., Zdravecka E., Himmerlich M., Haensel T., Krischok S., Kotlar M., Michniak P., Vesely M., Redhammer R. Raman spectroscopy of amorphous carbon prepared by pulsed arc discharge in various gas mixtures. J. Spectrosc. 2013;2013:467079. doi: 10.1155/2013/467079. DOI

Bernard M., Deneuville A., Muret P. Non-destructive determination of the boron concentration of heavily doped metallic diamond thin films from raman spectroscopy. Diam. Relat. Mater. 2004;13:282–286. doi: 10.1016/j.diamond.2003.10.051. DOI

Alehashem S., Chambers F., Strojek J.W., Swain G.M., Ramesham R. Cyclic voltammetric studies of charge-transfer reactions at highly boron-doped polycrystalline diamond thin-film electrodes. Anal. Chem. 1995;67:2812–2821. doi: 10.1021/ac00113a014. DOI

Strojek J.W., Granger M.C., Swain G.M., Dallas T., Holtz M.W. Enhanced signal-to-background ratios in voltammetric measurements made at diamond thin-film electrochemical interfaces. Anal. Chem. 1996;68:2031–2037. doi: 10.1021/ac9506847. PubMed DOI

Ferro S., De Battisti A. Electron transfer reactions at conductive diamond electrodes. Electrochim. Acta. 2002;47:1641–1649. doi: 10.1016/S0013-4686(01)00898-2. DOI

Granger M.C., Swain G.M. The influence of surface interactions on the reversibility of ferri/ferrocyanide at boron--doped diamond thin--film electrodes. J. Electrochem. Soc. 1999;146:4551–4558. doi: 10.1149/1.1392673. DOI

Friso F., Trasatti S. Electron transfer at boron-doped diamond electrodes. Comparison with pt, au and ruo2. Collect. Czech. Chem. Commun. 2003;68:1621–1635. doi: 10.1135/cccc20031621. DOI

Bard A.J. Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: The challenge. J. Am. Chem. Soc. 2010;132:7559–7567. doi: 10.1021/ja101578m. PubMed DOI

Macpherson J.V. A practical guide to using boron doped diamond in electrochemical research. Phys. Chem. Chem. Phys. 2015;17:2935–2949. doi: 10.1039/C4CP04022H. PubMed DOI

Nicholson R.S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965;37:1351–1355. doi: 10.1021/ac60230a016. DOI

Fischer A.E., Show Y., Swain G.M. Electrochemical performance of diamond thin-film electrodes from different commercial sources. Anal. Chem. 2004;76:2553–2560. doi: 10.1021/ac035214o. PubMed DOI

Gerhardt G., Adams R.N. Determination of diffusion coefficients by flow injection analysis. Anal. Chem. 1982;54:2618–2620. doi: 10.1021/ac00251a054. DOI

Kovach P.M., Deakin M.R., Wightman R.M. Electrochemistry at partially blocked carbon-fiber microcylinder electrodes. J. Phys. Chem. 1986;90:4612–4617. doi: 10.1021/j100410a028. DOI

Oliveira S.C.B., Oliveira-Brett A.M. Voltammetric and electrochemical impedance spectroscopy characterization of a cathodic and anodic pre-treated boron doped diamond electrode. Electrochim. Acta. 2010;55:4599–4605. doi: 10.1016/j.electacta.2010.03.016. DOI

Radhofer-Welte S., Rabasseda X. Lornoxicam, a new potent nsaid with an improved tolerability profile. Drugs Today. 2000;36:55–76. doi: 10.1358/dot.2000.36.1.566627. PubMed DOI

Helmy H.S., El-Sahar A.E., Sayed R.H., Shamma R.N., Salama A.H., Elbaz E.M. Therapeutic effects of lornoxicam-loaded nanomicellar formula in experimental models of rheumatoid arthritis. Int. J. Nanomed. 2017;12:7015–7023. doi: 10.2147/IJN.S147738. PubMed DOI PMC

Mentes O., Bagci M. Postoperative pain management after inguinal hernia repair: Lornoxicam versus tramadol. Hernia. 2009;13:427–430. doi: 10.1007/s10029-009-0486-1. PubMed DOI

Torriero A.A.J., Tonn C.E., Sereno L., Raba J. Electrooxidation mechanism of non-steroidal anti-inflammatory drug piroxicam at glassy carbon electrode. J. Electroanal. Chem. 2006;588:218–225. doi: 10.1016/j.jelechem.2005.12.023. DOI

Selesovska R., Hlobenova F., Skopalova J., Cankar P., Janikova L., Chylkova J. Electrochemical oxidation of anti-inflammatory drug meloxicam and its determination using boron doped diamond electrode. J. Electroanal. Chem. 2020;858 doi: 10.1016/j.jelechem.2019.113758. DOI

Bozal B., Uslu B. Applications of carbon based electrodes for voltammetric determination of lornoxicam in pharmaceutical dosage form and human serum. Comb. Chem. High Throughput Screen. 2010;13:599–609. doi: 10.2174/1386207311004070599. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...