Effect of different modification by gold nanoparticles on the electrochemical performance of screen-printed sensors with boron-doped diamond electrode
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
SGSFChT_2023_002
Univerzita Pardubice
20-01589S
Grantová Agentura České Republiky
1/0554/20
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0554/20
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0554/20
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0554/20
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
APVV-20-0310
Agentúra na Podporu Výskumu a Vývoja
APVV-20-0310
Agentúra na Podporu Výskumu a Vývoja
APVV-20-0310
Agentúra na Podporu Výskumu a Vývoja
APVV-20-0310
Agentúra na Podporu Výskumu a Vývoja
PubMed
38057545
PubMed Central
PMC10700314
DOI
10.1038/s41598-023-48834-7
PII: 10.1038/s41598-023-48834-7
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Screen-printed sensors with chemically deposited boron-doped diamond electrodes (BDDE) were modified with different types of gold nanoparticles (AuNPs) according to a new original procedure. Physically and electrochemically deposited AuNPs had various sizes and also nanoporous character. They also differ in shape and density of surface coverage. The developed sensors were characterized using scanning electron microscopy and Raman spectroscopy. Their electrochemical properties were studied using cyclic voltammetry and electrochemical impedance spectrometry of selected outer sphere ([Ru(NH3)6]Cl3) and inner sphere (K3[Fe(CN)6], dopamine) redox markers. The application possibilities of such novel screen-printed sensors with BDDE modified by AuNPs were verified in the analysis of the neurotransmitter dopamine. The best analytical performance was achieved using printed sensors modified with the smallest AuNPs. The achieved limit of detection values in nanomolar concentrations (2.5 nmol L-1) are much lower than those of unmodified electrodes, which confirms the significant catalytic effects of gold nanoparticles on the surface of the working electrode. Sensors with the best electrochemical properties were successfully applied in the analysis of a model solution and spiked urine samples.
See more in PubMed
Baluchová S, et al. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules: A review. Anal. Chim. Acta. 2019;1077:30–66. doi: 10.1016/j.aca.2019.05.041. PubMed DOI
Honeychurch KC. Cheap and disposable gold and silver electrodes: Trends in the application of compact discs and digital versatile discs for electroanalytical chemistry. Trends Anal. Chem. 2017;93:51–66. doi: 10.1016/j.trac.2017.04.013. DOI
Amaral EMF, et al. Electrochemical sensors and biosensors: Their basic working principles and some applications. Rev. Virtual Quim. 2022 doi: 10.21577/1984-6835.20220112. DOI
Uslu B, Ozkan SA. Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Anal. Lett. 2011;44:2644–2702. doi: 10.1080/00032719.2011.553010. DOI
Fu Q, et al. A portable smartphone-based hemoglobin point-of-care testing platform for accurate anemia diagnostics. Biosens. Bioelectron. 2022;217:114711. doi: 10.1016/j.bios.2022.114711. PubMed DOI
Li DY, et al. Target-induced tripedal G-quadruplex DNAzyme for multicolor visual point-of-care testing of biomarkers using Au nanorods-decorated electrospun nanofibrous films. Sens. Actuators B Chem. 2022;371:132510. doi: 10.1016/j.snb.2022.132510. DOI
Swain GM, Anderson AB, Angus JC. Applications of diamond thin films in electrochemistry. MRS Bull. 1998;23:56–60. doi: 10.1557/S0883769400029389. DOI
Yang N, et al. Conductive diamond: Synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 2019;48:157–204. doi: 10.1039/C7CS00757D. PubMed DOI
Patel K, Hashimoto K, Fujishima A. Application of boron-doped CVD-diamond film to photoelectrode. Denki Kagaku. 1992;1961(60):659–661. doi: 10.5796/electrochemistry.60.659. DOI
Matvieiev O, et al. Novel screen-printed sensor with chemically deposited boron-doped diamond electrode: Preparation, characterization, and application. Biosensors. 2022;12:241. doi: 10.3390/bios12040241. PubMed DOI PMC
Matvieiev O, et al. Voltammetric analysis of mephenoxalone drug in pharmaceutical and biological samples using novel screen-printed sensor with boron-doped diamond electrode. Sens. Actuators B Chem. 2023;397:134700. doi: 10.1016/j.snb.2023.134700. DOI
Ishii K, Ogata G, Einaga Y. Electrochemical detection of triamterene in human urine using boron-doped diamond electrodes. Biosens. Bioelectron. 2022;217:114666. doi: 10.1016/j.bios.2022.114666. PubMed DOI
Baluchová S, Mamaloukou A, Koldenhof RHJM, Buijnsters JG. Modification-free boron-doped diamond as a sensing material for direct and reliable detection of the antiretroviral drug nevirapine. Electrochim. Acta. 2023;450:142238. doi: 10.1016/j.electacta.2023.142238. DOI
Hrdlička V, Matvieiev O, Navrátil T, Šelešovská R. Recent advances in modified boron-doped diamond electrodes: A review. Electrochim. Acta. 2023;456:142435. doi: 10.1016/j.electacta.2023.142435. DOI
Ivandini TA, et al. Development of a biochemical oxygen demand sensor using gold-modified boron doped diamond electrodes. Anal. Chem. 2012;84:9825–9832. doi: 10.1021/ac302090y. PubMed DOI
Bottari F, De Wael K. Electrodeposition of gold nanoparticles on boron doped diamond electrodes for the enhanced reduction of small organic molecules. J. Electroanal. Chem. 2017;801:521–526. doi: 10.1016/j.jelechem.2017.07.053. DOI
Saravanan KR, Chandrasekaran M, Suryanarayanan V. Efficient electrocarboxylation of benzophenone on silver nanoparticles deposited boron doped diamond electrode. J. Electroanal. Chem. 2015;757:18–22. doi: 10.1016/j.jelechem.2015.08.033. DOI
Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y. Electroanalytical application of modified diamond electrodes. Diam. Relat. Mater. 2004;13:2003–2008. doi: 10.1016/j.diamond.2004.07.004. DOI
Jiwanti PK, Einaga Y. Electrochemical reduction of CO2 using palladium modified boron-doped diamond electrodes: Enhancing the production of CO. Phys. Chem. Chem. Phys. 2019;21:15297–15301. doi: 10.1039/C9CP01409H. PubMed DOI
McLaughlin MHS, Pakpour-Tabrizi AC, Jackman RB. A detailed EIS study of boron doped diamond electrodes decorated with gold nanoparticles for high sensitivity mercury detection. Sci. Rep. 2021;11:9505. doi: 10.1038/s41598-021-89045-2. PubMed DOI PMC
Salvo-Comino C, et al. Voltammetric sensor based on molecularly imprinted chitosan-carbon nanotubes decorated with gold nanoparticles nanocomposite deposited on boron-doped diamond electrodes for catechol detection. Materials. 2020;13:688. doi: 10.3390/ma13030688. PubMed DOI PMC
Pungjunun K, et al. Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device. Microchim. Acta. 2018;185:324. doi: 10.1007/s00604-018-2821-7. PubMed DOI
El-Deab MS, Sotomura T, Ohsaka T. Size and crystallographic orientation controls of gold nanoparticles electrodeposited on GC electrodes. J. Electrochem. Soc. 2005;152:C1. doi: 10.1149/1.1824041. DOI
El-Deab MS, Ohsaka T. An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochem. Commun. 2002;4:288–292. doi: 10.1016/S1388-2481(02)00263-1. DOI
Mie Y, Takayama H, Hirano Y. Facile control of surface crystallographic orientation of anodized nanoporous gold catalyst and its application for highly efficient hydrogen evolution reaction. J. Catal. 2020;389:476–482. doi: 10.1016/j.jcat.2020.06.023. DOI
Teniou A, Rhouati A, Catanante G. A simple fluorescent aptasensing platform based on graphene oxide for dopamine determination. Appl. Biochem. Biotechnol. 2022;194:1925–1937. doi: 10.1007/s12010-022-03802-1. PubMed DOI
Peltola E, et al. Electrochemical fouling of dopamine and recovery of carbon electrodes. Anal. Chem. 2018;90:1408–1416. doi: 10.1021/acs.analchem.7b04793. PubMed DOI
Mortet V, et al. Analysis of heavily boron-doped diamond Raman spectrum. Diam. Relat. Mater. 2018;88:163–166. doi: 10.1016/j.diamond.2018.07.013. DOI
Marton M, et al. Raman spectroscopy of amorphous carbon prepared by pulsed arc discharge in various gas mixtures. J. Spectrosc. 2013;2013:1–6. doi: 10.1155/2013/467079. DOI
Granger MC, Swain GM. The influence of surface interactions on the reversibility of Ferri/Ferrocyanide at boron-doped diamond thin-film electrodes. J. Electrochem. Soc. 1999;146:4551–4558. doi: 10.1149/1.1392673. DOI
Macpherson JV. A practical guide to using boron doped diamond in electrochemical research. Phys. Chem. Chem. Phys. 2015;17:2935–2949. doi: 10.1039/C4CP04022H. PubMed DOI
Schwarzová-Pecková K, et al. Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes. Electrochim. Acta. 2017;243:170–182. doi: 10.1016/j.electacta.2017.05.006. DOI
Bard AJ. Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: The challenge. J. Am. Chem. Soc. 2010;132:7559–7567. doi: 10.1021/ja101578m. PubMed DOI
Magotra VK, et al. Effect of gold nanoparticles laced anode on the bio-electro-catalytic activity and power generation ability of compost based microbial fuel cell as a coin cell sized device. Biomass Bioenergy. 2021;152:106200. doi: 10.1016/j.biombioe.2021.106200. DOI
Shim JH, Kim J, Go A, Lee C, Lee Y. The effect of electrochemical pretreatment on the catalytic activity of carbon-supported gold nanoparticles for NADH oxidation. Mater. Lett. 2013;91:330–333. doi: 10.1016/j.matlet.2012.10.005. DOI
Gosser DK. Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms. Wiley; 1993.
Macdonald DD. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta. 2006;51:1376–1388. doi: 10.1016/j.electacta.2005.02.107. DOI
Huang J. Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochim. Acta. 2018;281:170–188. doi: 10.1016/j.electacta.2018.05.136. DOI
Weis M, Lee K, Taguchi D, Manaka T, Iwamoto M. Electrochemical methods coupled with impedance measurement for energy gap study: Correlation between the energy states and charge transport properties. Synth. Met. 2012;162:2236–2241. doi: 10.1016/j.synthmet.2012.11.002. DOI
Weis M, Lin J, Taguchi D, Manaka T, Iwamoto M. The charge transport in organic field-effect transistor as an interface charge propagation: The Maxwell–Wagner effect model and transmission line approximation. Jpn. J. Appl. Phys. 2010;49:071603. doi: 10.1143/JJAP.49.071603. DOI
Eloul S, Compton RG. Charge diffusion on the surface of particles with simple geometries. J. Phys. Chem. C. 2015;119:27540–27549. doi: 10.1021/acs.jpcc.5b09455. DOI
Barnes EO, Chen X, Li P, Compton RG. Voltammetry at porous electrodes: A theoretical study. J. Electroanal. Chem. 2014;720–721:92–100. doi: 10.1016/j.jelechem.2014.03.028. DOI
Marton M, et al. New chemical pathway for large-area deposition of doped diamond films by linear antenna microwave plasma chemical vapor deposition. Diam. Relat. Mater. 2022;126:109111. doi: 10.1016/j.diamond.2022.109111. DOI
Šelešovská R, et al. Novel screen-printed sensors with chemically deposited boron-doped diamond and their use for voltammetric determination of attention deficit hyperactivity disorder medication atomoxetine. Electrochim. Acta. 2022;403:139642. doi: 10.1016/j.electacta.2021.139642. DOI
Wang D, Schaaf P. Nanoporous gold nanoparticles. J. Mater. Chem. 2012;22:5344. doi: 10.1039/c2jm15727f. DOI
Dushna O, Dubenska L, Marton M, Hatala M, Vojs M. Sensitive and selective voltammetric method for determination of quinoline alkaloid, quinine in soft drinks and urine by applying a boron-doped diamond electrode. Microchem. J. 2023;191:108839. doi: 10.1016/j.microc.2023.108839. DOI
Mocak J, Bond AM, Mitchell S, Scollary G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques (technical report) Pure Appl. Chem. 1997;69:297–328. doi: 10.1351/pac199769020297. DOI
Validation of Analytical Procedures: Text and Methodology (ICH Q2(R1)). International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human (ICH)https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline (2018).