Thrombotic and Atherogenetic Predisposition in Polyglobulic Donors

. 2022 Apr 12 ; 10 (4) : . [epub] 20220412

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35453637
Odkazy

PubMed 35453637
PubMed Central PMC9027744
DOI 10.3390/biomedicines10040888
PII: biomedicines10040888
Knihovny.cz E-zdroje

This work analyses the results of research regarding the predisposition of genetic hematological risks associated with secondary polyglobulia. The subjects of the study were selected based on shared laboratory markers and basic clinical symptoms. JAK2 (Janus Kinase 2) mutation negativity represented the common genetic marker of the subjects in the sample of interest. A negative JAK2 mutation hypothetically excluded the presence of an autonomous myeloproliferative disease at the time of detection. The parameters studied in this work focused mainly on thrombotic, immunological, metabolic, and cardiovascular risks. The final goal of the work was to discover the most significant key markers for the diagnosis of high-risk patients and to exclude the less important or only complementary markers, which often represent a superfluous economic burden for healthcare institutions. These research results are applicable as a clinical guideline for the effective diagnosis of selected parameters that demonstrated high sensitivity and specificity. According to the results obtained in the present research, groups with a high incidence of mutations were evaluated as being at higher risk for polycythemia vera disease. It was not possible to clearly determine which of the patients examined had a higher risk of developing the disease as different combinations of mutations could manifest different symptoms of the disease. In general, the entire study group was at risk for manifestations of polycythemia vera disease without a clear diagnosis. The group with less than 20% incidence appeared to be clinically insignificant for polycythemia vera testing and thus there is a potential for saving money in mutation testing. On the other hand, the JAK V617F (somatic mutation of JAK2) parameter from this group should be investigated as it is a clear exclusion or confirmation of polycythemia vera as the primary disease.

Zobrazit více v PubMed

Kralovics R., Passamonti F., Buser A.S., Teo S.S., Tiedt R., Passweg J.R., Tichelli A., Cazzola M., Skoda R.C. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 2005;352:1779–1790. doi: 10.1056/NEJMoa051113. PubMed DOI

Tefferi A., Thiele J., Orazi A., Kvasnicka H.M., Barbui T., Hanson C.A., Barosi G., Verstovsek S., Birgegard G., Mesa R., et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: Recommendations from an ad hoc international expert panel. Blood. 2007;110:1092–1097. doi: 10.1182/blood-2007-04-083501. PubMed DOI

Baxter E.J., Scott L.M., Campbell P.J., East C., Fourouclas N., Swanton S., Vassiliou G.S., Bench A.J., Boyd E.M., Curtin N., et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–1061. doi: 10.1016/S0140-6736(05)71142-9. PubMed DOI

Levine R.L., Wadleigh M., Cools J., Ebert B.L., Wernig G., Huntly B.J., Boggon T.J., Wlodarska I., Clark J.J., Moore S., et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–397. doi: 10.1016/j.ccr.2005.03.023. PubMed DOI

Neunteufl T., Heher S., Stefenelli T., Pabinger I., Gisslinger H. Endothelial dysfunction in patients with polycythaemia vera. Br. J. Haematol. 2001;115:354–359. doi: 10.1046/j.1365-2141.2001.03092.x. PubMed DOI

Bonetti P.O., Lerman L.O., Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 2003;23:168–175. doi: 10.1161/01.ATV.0000051384.43104.FC. PubMed DOI

Colombo M.G., Paradossi U., Andreassi M.G., Botto N., Manfredi S., Masetti S., Biagini A., Clerico A. Endothelial nitric oxide synthase gene polymorphisms and risk of coronary artery disease. Clin. Chem. 2003;49:389–395. doi: 10.1373/49.3.389. PubMed DOI

Finazzi G., Rambaldi A., Guerini V., Carobbo A., Barbui T. Risk of thrombosis in patients with essential thrombocythemia and polycythemia vera according to JAK2 V617F mutation status. Haematologica. 2007;92:135–136. doi: 10.3324/haematol.10634. PubMed DOI

Ihle J.N., Gilliland D.G. Jak2: Normal function and role in hematopoietic disorders. Curr. Opin. Genet. Dev. 2007;17:8–14. doi: 10.1016/j.gde.2006.12.009. PubMed DOI

Lippert E., Boissinot M., Kralovics R., Girodon F., Dobo I., Praloran V., Boiret-Dupré N., Skoda R.C., Hermouet S. The JAK2-V617F mutationis frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood. 2006;108:1865–1867. doi: 10.1182/blood-2006-01-013540. PubMed DOI

Pietra D., Li S., Brisci A., Passamonti F., Rumi E., Theocharides A., Ferrari M., Gisslinger H., Kralovics R., Cremonesi L., et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood. 2008;111:1686–1689. doi: 10.1182/blood-2007-07-101576. PubMed DOI

Napoli C., Ignarro L.J. Nitric oxide and atherosclerosis. Nitric Oxide. 2001;5:88–97. doi: 10.1006/niox.2001.0337. PubMed DOI

Schwentker A., Vodovotz Y., Weller R., Billiar T.R. Nitric oxide and wound repair: Role of cytokines? Nitric Oxide. 2002;7:1–10. doi: 10.1016/S1089-8603(02)00002-2. PubMed DOI

Vallet B. Vascular reactivity and tissue oxygenation. Intensive Care Med. 1998;24:3–11. doi: 10.1007/s001340050507. PubMed DOI

James C., Ugo V., Le Couédic J.P., Staerk J., Delhommeau F., Lacout C., Garçon L., Raslova H., Berger R., Bennaceur-Griscelli A., et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–1148. doi: 10.1038/nature03546. PubMed DOI

Vainchenker W., Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood J. Am. Soc. Hematol. 2017;129:667–679. doi: 10.1182/blood-2016-10-695940. PubMed DOI

Rumi E., Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood J. Am. Soc. Hematol. 2017;129:680–692. doi: 10.1182/blood-2016-10-695957. PubMed DOI PMC

Kander E.M., Moliterno A.R., Rademaker A., Streiff M.B., Spivak J.L., Stein B.L. Practice Patterns in the Diagnosis and Treatment of Polycythemia Vera in the Post{JAK2 V617F Discovery Era. J. Natl. Compr. Cancer Netw. 2016;14:1238–1245. doi: 10.6004/jnccn.2016.0133. PubMed DOI

Spivak J.L. Polycythemia vera. Curr. Treat. Options Oncol. 2018;19:12. doi: 10.1007/s11864-018-0529-x. PubMed DOI

Bartalucci N., Guglielmelli P., Vannucchi A.M. Polycythemia vera: The current status of preclinical models and therapeutic targets. Expert Opin. Ther. Targets. 2020;24:615–628. doi: 10.1080/14728222.2020.1762176. PubMed DOI

Tefferi A., Barbui T. Polycythemia vera and essential thrombocythemia: 2019 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2019;94:133–143. doi: 10.1002/ajh.25303. PubMed DOI

Guglielmelli P., Vannucchi A.M. Current management strategies for polycythemia vera and essential thrombocythemia. Blood Rev. 2020;42:100714. doi: 10.1016/j.blre.2020.100714. PubMed DOI

Yakushina I., Skhirtladze M., Balahonova N., Ivashkin V., Losik E., Kerchev V., Garanina I., Chekryzhova D., Sechenov I. Clinical case of combined genetic pathology in a patient. Biol. Markers Fundam. Clin. Med. 2019;3:36–37. doi: 10.29256/v.03.01.2019.escbm21. DOI

Robinson J.G., Williams K.J., Gidding S., Borén J., Tabas I., Fisher E.A., Packard C., Pencina M., Fayad Z.A., Mani V., et al. Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life. J. Am. Heart Assoc. 2018;7:e009778. doi: 10.1161/JAHA.118.009778. PubMed DOI PMC

Sniderman A.D., Thanassoulis G., Glavinovic T., Navar A.M., Pencina M., Catapano A., Ference B.A. Apolipoprotein B particles and cardiovascular disease: A narrative review. JAMA Cardiol. 2019;4:1287–1295. doi: 10.1001/jamacardio.2019.3780. PubMed DOI PMC

Marais A.D. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology. 2019;51:165–176. doi: 10.1016/j.pathol.2018.11.002. PubMed DOI

Mahley R.W. Apolipoprotein E: From cardiovascular disease to neurodegenerative disorders. J. Mol. Med. 2016;94:739–746. doi: 10.1007/s00109-016-1427-y. PubMed DOI PMC

Montagnana M., Lippi G., Danese E. Hemostasis and Thrombosis. Humana Press; New York, NY, USA: 2017. An Overview of Thrombophilia and Associated Laboratory Testing; pp. 113–135. PubMed

Lapelusa A.D., Heeransh D. Physiology, Hemostasis. StatPearls Publishing; Treasure Island, FL, USA: 2019.

Kujovich J.L. Factor V Leiden thrombophilia. Genet. Med. 2011;13:1–16. doi: 10.1097/GIM.0b013e3181faa0f2. PubMed DOI

Campello E., Spiezia L., SimionI P. Diagnosis and management of factor V Leiden. Expert Rev. Hematol. 2016;9:1139–1149. doi: 10.1080/17474086.2016.1249364. PubMed DOI

Otrock Z.K., Taher A.T., Shamseddeen W.A., Zaatari G., Bazarbachi A., Mahfouz R.A. Factor V HR2 haplotype: A risk factor for venous thromboembolism in individuals with absence of Factor V Leiden. Ann. Hematol. 2008;87:1013–1016. doi: 10.1007/s00277-008-0543-3. PubMed DOI

Zivelin A., Rosenberg N., Faier S., Kornbrot N., Peretz H., Mannhalter C., Horellou M.H., Seligsohn U. A single genetic origin for the common prothrombotic G20210A polymorphism in the prothrombin gene. Blood J. Am. Soc. Hematol. 1998;92:1119–1124. PubMed

Heil S.G., Den Heijer M., Van Der Rijt-Pisa B.J., Kluijtmans L.A., Blom H.J. The 894 G> T variant of endothelial nitric oxide synthase (eNOS) increases the risk of recurrent venous thrombosis through interaction with elevated homocysteine levels. J. Thromb. Haemost. 2004;2:750–753. doi: 10.1111/j.1538-7836.2004.00701.x. PubMed DOI

Randriamboavonjy V., Fleming I. Endothelial nitric oxide synthase (eNOS) in platelets: How is it regulated and what is it doing there? Pharmacol. Rep. 2005;57:59. PubMed

Colafella K.M.M., Bovee D.M., Danser A.H.J. The renin-angiotensin-aldosterone system and its therapeutic targets. Exp. Eye Res. 2019;186:107680. doi: 10.1016/j.exer.2019.05.020. PubMed DOI

Miller A.J., Arnold A.C. The renin-angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications. Clin. Auton. Res. 2019;29:231–243. doi: 10.1007/s10286-018-0572-5. PubMed DOI PMC

Brown N.J., Vaughan D.E. Angiotensin-converting enzyme inhibitors. Circulation. 1998;97:1411–1420. doi: 10.1161/01.CIR.97.14.1411. PubMed DOI

Klerk M., Verhoef P., Clarke R., Blom H.J., Kok F.J., Schouten E.G., MTHFR Studies Collaboration Group MTHFR 677C-T polymorphism and risk of coronary heart disease: A meta-analysis. JAMA. 2002;288:2023–2031. doi: 10.1001/jama.288.16.2023. PubMed DOI

Den H.M., Lewington S., Clarke R. Homocysteine, MTHFR and risk of venous thrombosis: A meta-analysis of published epidemiological studies. J. Thromb. Haemost. 2005;3:292–299. PubMed

Fager A.M., Machlus K.R., Ezban M., Hoffman M. Human platelets express endothelial protein C receptor, which can be utilized to enhance localization of factor VIIa activity. J. Thromb. Haemost. 2018;16:1817–1829. doi: 10.1111/jth.14165. PubMed DOI PMC

Medina P., Navarro S., Estellés A., Vayá A., Bertina R.M., España F. Influence of the 4600A/G and 4678G/C polymorphisms in the endothelial protein C receptor (EPCR) gene on the risk of venous thromboembolism in carriers of factor V Leiden. Thromb. Haemost. 2005;94:389–394. doi: 10.1160/TH05-02-0089. PubMed DOI

Trompet S., de Craen A.J., Slagboom P., Shepherd J., Blauw G.J., Murphy M.B., Bollen E.L., Buckley B.M., Ford I., Gaw A., et al. Lymphotoxin-alpha C804A polymorphism is a risk factor for stroke. The PROSPER study. Exp. Gerontol. 2008;43:801–805. doi: 10.1016/j.exger.2008.04.006. PubMed DOI

Shattil S.J., Hoxie J.A., Cunningham M., Brass L.F. Changes in the platelet membrane glycoprotein IIb. IIIa complex during platelet activation. J. Biol. Chem. 1985;260:11107–11114. doi: 10.1016/S0021-9258(17)39154-8. PubMed DOI

Beardsley D.S., Spiegel J.E., Jacobs M.M., Handin R.I., Lux S.E., 4th Platelet membrane glycoprotein IIIa contains target antigens that bind anti-platelet antibodies in immune thrombocytopenias. J. Clin. Investig. 1984;74:1701–1707. doi: 10.1172/JCI111587. PubMed DOI PMC

Behague I., Poirier O., Nicaud V., Evans A., Arveiler D., Luc G., Cambou J.P., Scarabin P.Y., Bara L., Green F., et al. Beta fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction: The ECTIM study. Circulation. 1996;93:440–449. doi: 10.1161/01.CIR.93.3.440. PubMed DOI

Muszbek L., Yee V.C., Hevessy Z. Blood coagulation factor XIII: Structure and function. Thromb. Res. 1999;94:271–305. doi: 10.1016/S0049-3848(99)00023-7. PubMed DOI

Sartori M.T., Wiman B., Vettore S., Dazzi F., Girolami A., Patrassi G.M. 4G/5G polymorphism of PAI-1 gene promoter and fibrinolytic capacity in patients with deep vein thrombosis. Thromb. Haemost. 1998;80:956–960. doi: 10.1055/s-0037-1615395. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...