Thrombotic and Atherogenetic Predisposition in Polyglobulic Donors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35453637
PubMed Central
PMC9027744
DOI
10.3390/biomedicines10040888
PII: biomedicines10040888
Knihovny.cz E-zdroje
- Klíčová slova
- JAK2, mutation, polycythemia vera, secondary polyglobulia,
- Publikační typ
- časopisecké články MeSH
This work analyses the results of research regarding the predisposition of genetic hematological risks associated with secondary polyglobulia. The subjects of the study were selected based on shared laboratory markers and basic clinical symptoms. JAK2 (Janus Kinase 2) mutation negativity represented the common genetic marker of the subjects in the sample of interest. A negative JAK2 mutation hypothetically excluded the presence of an autonomous myeloproliferative disease at the time of detection. The parameters studied in this work focused mainly on thrombotic, immunological, metabolic, and cardiovascular risks. The final goal of the work was to discover the most significant key markers for the diagnosis of high-risk patients and to exclude the less important or only complementary markers, which often represent a superfluous economic burden for healthcare institutions. These research results are applicable as a clinical guideline for the effective diagnosis of selected parameters that demonstrated high sensitivity and specificity. According to the results obtained in the present research, groups with a high incidence of mutations were evaluated as being at higher risk for polycythemia vera disease. It was not possible to clearly determine which of the patients examined had a higher risk of developing the disease as different combinations of mutations could manifest different symptoms of the disease. In general, the entire study group was at risk for manifestations of polycythemia vera disease without a clear diagnosis. The group with less than 20% incidence appeared to be clinically insignificant for polycythemia vera testing and thus there is a potential for saving money in mutation testing. On the other hand, the JAK V617F (somatic mutation of JAK2) parameter from this group should be investigated as it is a clear exclusion or confirmation of polycythemia vera as the primary disease.
Zobrazit více v PubMed
Kralovics R., Passamonti F., Buser A.S., Teo S.S., Tiedt R., Passweg J.R., Tichelli A., Cazzola M., Skoda R.C. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 2005;352:1779–1790. doi: 10.1056/NEJMoa051113. PubMed DOI
Tefferi A., Thiele J., Orazi A., Kvasnicka H.M., Barbui T., Hanson C.A., Barosi G., Verstovsek S., Birgegard G., Mesa R., et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: Recommendations from an ad hoc international expert panel. Blood. 2007;110:1092–1097. doi: 10.1182/blood-2007-04-083501. PubMed DOI
Baxter E.J., Scott L.M., Campbell P.J., East C., Fourouclas N., Swanton S., Vassiliou G.S., Bench A.J., Boyd E.M., Curtin N., et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–1061. doi: 10.1016/S0140-6736(05)71142-9. PubMed DOI
Levine R.L., Wadleigh M., Cools J., Ebert B.L., Wernig G., Huntly B.J., Boggon T.J., Wlodarska I., Clark J.J., Moore S., et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–397. doi: 10.1016/j.ccr.2005.03.023. PubMed DOI
Neunteufl T., Heher S., Stefenelli T., Pabinger I., Gisslinger H. Endothelial dysfunction in patients with polycythaemia vera. Br. J. Haematol. 2001;115:354–359. doi: 10.1046/j.1365-2141.2001.03092.x. PubMed DOI
Bonetti P.O., Lerman L.O., Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 2003;23:168–175. doi: 10.1161/01.ATV.0000051384.43104.FC. PubMed DOI
Colombo M.G., Paradossi U., Andreassi M.G., Botto N., Manfredi S., Masetti S., Biagini A., Clerico A. Endothelial nitric oxide synthase gene polymorphisms and risk of coronary artery disease. Clin. Chem. 2003;49:389–395. doi: 10.1373/49.3.389. PubMed DOI
Finazzi G., Rambaldi A., Guerini V., Carobbo A., Barbui T. Risk of thrombosis in patients with essential thrombocythemia and polycythemia vera according to JAK2 V617F mutation status. Haematologica. 2007;92:135–136. doi: 10.3324/haematol.10634. PubMed DOI
Ihle J.N., Gilliland D.G. Jak2: Normal function and role in hematopoietic disorders. Curr. Opin. Genet. Dev. 2007;17:8–14. doi: 10.1016/j.gde.2006.12.009. PubMed DOI
Lippert E., Boissinot M., Kralovics R., Girodon F., Dobo I., Praloran V., Boiret-Dupré N., Skoda R.C., Hermouet S. The JAK2-V617F mutationis frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood. 2006;108:1865–1867. doi: 10.1182/blood-2006-01-013540. PubMed DOI
Pietra D., Li S., Brisci A., Passamonti F., Rumi E., Theocharides A., Ferrari M., Gisslinger H., Kralovics R., Cremonesi L., et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood. 2008;111:1686–1689. doi: 10.1182/blood-2007-07-101576. PubMed DOI
Napoli C., Ignarro L.J. Nitric oxide and atherosclerosis. Nitric Oxide. 2001;5:88–97. doi: 10.1006/niox.2001.0337. PubMed DOI
Schwentker A., Vodovotz Y., Weller R., Billiar T.R. Nitric oxide and wound repair: Role of cytokines? Nitric Oxide. 2002;7:1–10. doi: 10.1016/S1089-8603(02)00002-2. PubMed DOI
Vallet B. Vascular reactivity and tissue oxygenation. Intensive Care Med. 1998;24:3–11. doi: 10.1007/s001340050507. PubMed DOI
James C., Ugo V., Le Couédic J.P., Staerk J., Delhommeau F., Lacout C., Garçon L., Raslova H., Berger R., Bennaceur-Griscelli A., et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–1148. doi: 10.1038/nature03546. PubMed DOI
Vainchenker W., Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood J. Am. Soc. Hematol. 2017;129:667–679. doi: 10.1182/blood-2016-10-695940. PubMed DOI
Rumi E., Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood J. Am. Soc. Hematol. 2017;129:680–692. doi: 10.1182/blood-2016-10-695957. PubMed DOI PMC
Kander E.M., Moliterno A.R., Rademaker A., Streiff M.B., Spivak J.L., Stein B.L. Practice Patterns in the Diagnosis and Treatment of Polycythemia Vera in the Post{JAK2 V617F Discovery Era. J. Natl. Compr. Cancer Netw. 2016;14:1238–1245. doi: 10.6004/jnccn.2016.0133. PubMed DOI
Spivak J.L. Polycythemia vera. Curr. Treat. Options Oncol. 2018;19:12. doi: 10.1007/s11864-018-0529-x. PubMed DOI
Bartalucci N., Guglielmelli P., Vannucchi A.M. Polycythemia vera: The current status of preclinical models and therapeutic targets. Expert Opin. Ther. Targets. 2020;24:615–628. doi: 10.1080/14728222.2020.1762176. PubMed DOI
Tefferi A., Barbui T. Polycythemia vera and essential thrombocythemia: 2019 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2019;94:133–143. doi: 10.1002/ajh.25303. PubMed DOI
Guglielmelli P., Vannucchi A.M. Current management strategies for polycythemia vera and essential thrombocythemia. Blood Rev. 2020;42:100714. doi: 10.1016/j.blre.2020.100714. PubMed DOI
Yakushina I., Skhirtladze M., Balahonova N., Ivashkin V., Losik E., Kerchev V., Garanina I., Chekryzhova D., Sechenov I. Clinical case of combined genetic pathology in a patient. Biol. Markers Fundam. Clin. Med. 2019;3:36–37. doi: 10.29256/v.03.01.2019.escbm21. DOI
Robinson J.G., Williams K.J., Gidding S., Borén J., Tabas I., Fisher E.A., Packard C., Pencina M., Fayad Z.A., Mani V., et al. Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life. J. Am. Heart Assoc. 2018;7:e009778. doi: 10.1161/JAHA.118.009778. PubMed DOI PMC
Sniderman A.D., Thanassoulis G., Glavinovic T., Navar A.M., Pencina M., Catapano A., Ference B.A. Apolipoprotein B particles and cardiovascular disease: A narrative review. JAMA Cardiol. 2019;4:1287–1295. doi: 10.1001/jamacardio.2019.3780. PubMed DOI PMC
Marais A.D. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology. 2019;51:165–176. doi: 10.1016/j.pathol.2018.11.002. PubMed DOI
Mahley R.W. Apolipoprotein E: From cardiovascular disease to neurodegenerative disorders. J. Mol. Med. 2016;94:739–746. doi: 10.1007/s00109-016-1427-y. PubMed DOI PMC
Montagnana M., Lippi G., Danese E. Hemostasis and Thrombosis. Humana Press; New York, NY, USA: 2017. An Overview of Thrombophilia and Associated Laboratory Testing; pp. 113–135. PubMed
Lapelusa A.D., Heeransh D. Physiology, Hemostasis. StatPearls Publishing; Treasure Island, FL, USA: 2019.
Kujovich J.L. Factor V Leiden thrombophilia. Genet. Med. 2011;13:1–16. doi: 10.1097/GIM.0b013e3181faa0f2. PubMed DOI
Campello E., Spiezia L., SimionI P. Diagnosis and management of factor V Leiden. Expert Rev. Hematol. 2016;9:1139–1149. doi: 10.1080/17474086.2016.1249364. PubMed DOI
Otrock Z.K., Taher A.T., Shamseddeen W.A., Zaatari G., Bazarbachi A., Mahfouz R.A. Factor V HR2 haplotype: A risk factor for venous thromboembolism in individuals with absence of Factor V Leiden. Ann. Hematol. 2008;87:1013–1016. doi: 10.1007/s00277-008-0543-3. PubMed DOI
Zivelin A., Rosenberg N., Faier S., Kornbrot N., Peretz H., Mannhalter C., Horellou M.H., Seligsohn U. A single genetic origin for the common prothrombotic G20210A polymorphism in the prothrombin gene. Blood J. Am. Soc. Hematol. 1998;92:1119–1124. PubMed
Heil S.G., Den Heijer M., Van Der Rijt-Pisa B.J., Kluijtmans L.A., Blom H.J. The 894 G> T variant of endothelial nitric oxide synthase (eNOS) increases the risk of recurrent venous thrombosis through interaction with elevated homocysteine levels. J. Thromb. Haemost. 2004;2:750–753. doi: 10.1111/j.1538-7836.2004.00701.x. PubMed DOI
Randriamboavonjy V., Fleming I. Endothelial nitric oxide synthase (eNOS) in platelets: How is it regulated and what is it doing there? Pharmacol. Rep. 2005;57:59. PubMed
Colafella K.M.M., Bovee D.M., Danser A.H.J. The renin-angiotensin-aldosterone system and its therapeutic targets. Exp. Eye Res. 2019;186:107680. doi: 10.1016/j.exer.2019.05.020. PubMed DOI
Miller A.J., Arnold A.C. The renin-angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications. Clin. Auton. Res. 2019;29:231–243. doi: 10.1007/s10286-018-0572-5. PubMed DOI PMC
Brown N.J., Vaughan D.E. Angiotensin-converting enzyme inhibitors. Circulation. 1998;97:1411–1420. doi: 10.1161/01.CIR.97.14.1411. PubMed DOI
Klerk M., Verhoef P., Clarke R., Blom H.J., Kok F.J., Schouten E.G., MTHFR Studies Collaboration Group MTHFR 677C-T polymorphism and risk of coronary heart disease: A meta-analysis. JAMA. 2002;288:2023–2031. doi: 10.1001/jama.288.16.2023. PubMed DOI
Den H.M., Lewington S., Clarke R. Homocysteine, MTHFR and risk of venous thrombosis: A meta-analysis of published epidemiological studies. J. Thromb. Haemost. 2005;3:292–299. PubMed
Fager A.M., Machlus K.R., Ezban M., Hoffman M. Human platelets express endothelial protein C receptor, which can be utilized to enhance localization of factor VIIa activity. J. Thromb. Haemost. 2018;16:1817–1829. doi: 10.1111/jth.14165. PubMed DOI PMC
Medina P., Navarro S., Estellés A., Vayá A., Bertina R.M., España F. Influence of the 4600A/G and 4678G/C polymorphisms in the endothelial protein C receptor (EPCR) gene on the risk of venous thromboembolism in carriers of factor V Leiden. Thromb. Haemost. 2005;94:389–394. doi: 10.1160/TH05-02-0089. PubMed DOI
Trompet S., de Craen A.J., Slagboom P., Shepherd J., Blauw G.J., Murphy M.B., Bollen E.L., Buckley B.M., Ford I., Gaw A., et al. Lymphotoxin-alpha C804A polymorphism is a risk factor for stroke. The PROSPER study. Exp. Gerontol. 2008;43:801–805. doi: 10.1016/j.exger.2008.04.006. PubMed DOI
Shattil S.J., Hoxie J.A., Cunningham M., Brass L.F. Changes in the platelet membrane glycoprotein IIb. IIIa complex during platelet activation. J. Biol. Chem. 1985;260:11107–11114. doi: 10.1016/S0021-9258(17)39154-8. PubMed DOI
Beardsley D.S., Spiegel J.E., Jacobs M.M., Handin R.I., Lux S.E., 4th Platelet membrane glycoprotein IIIa contains target antigens that bind anti-platelet antibodies in immune thrombocytopenias. J. Clin. Investig. 1984;74:1701–1707. doi: 10.1172/JCI111587. PubMed DOI PMC
Behague I., Poirier O., Nicaud V., Evans A., Arveiler D., Luc G., Cambou J.P., Scarabin P.Y., Bara L., Green F., et al. Beta fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction: The ECTIM study. Circulation. 1996;93:440–449. doi: 10.1161/01.CIR.93.3.440. PubMed DOI
Muszbek L., Yee V.C., Hevessy Z. Blood coagulation factor XIII: Structure and function. Thromb. Res. 1999;94:271–305. doi: 10.1016/S0049-3848(99)00023-7. PubMed DOI
Sartori M.T., Wiman B., Vettore S., Dazzi F., Girolami A., Patrassi G.M. 4G/5G polymorphism of PAI-1 gene promoter and fibrinolytic capacity in patients with deep vein thrombosis. Thromb. Haemost. 1998;80:956–960. doi: 10.1055/s-0037-1615395. PubMed DOI