Identifying patient-specific behaviors to understand illness trajectories and predict relapses in bipolar disorder using passive sensing and deep anomaly detection: protocol for a contactless cohort study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R21 MH123849
NIMH NIH HHS - United States
PubMed
35459150
PubMed Central
PMC9026652
DOI
10.1186/s12888-022-03923-1
PII: 10.1186/s12888-022-03923-1
Knihovny.cz E-zdroje
- Klíčová slova
- Bipolar disorder, Episode prediction, Machine learning, Wearable device,
- MeSH
- bipolární porucha * diagnóza MeSH
- dospělí MeSH
- kohortové studie MeSH
- lidé MeSH
- poruchy nálady diagnóza MeSH
- recidiva MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Predictive models for mental disorders or behaviors (e.g., suicide) have been successfully developed at the level of populations, yet current demographic and clinical variables are neither sensitive nor specific enough for making individual clinical predictions. Forecasting episodes of illness is particularly relevant in bipolar disorder (BD), a mood disorder with high recurrence, disability, and suicide rates. Thus, to understand the dynamic changes involved in episode generation in BD, we propose to extract and interpret individual illness trajectories and patterns suggestive of relapse using passive sensing, nonlinear techniques, and deep anomaly detection. Here we describe the study we have designed to test this hypothesis and the rationale for its design. METHOD: This is a protocol for a contactless cohort study in 200 adult BD patients. Participants will be followed for up to 2 years during which they will be monitored continuously using passive sensing, a wearable that collects multimodal physiological (heart rate variability) and objective (sleep, activity) data. Participants will complete (i) a comprehensive baseline assessment; (ii) weekly assessments; (iii) daily assessments using electronic rating scales. Data will be analyzed using nonlinear techniques and deep anomaly detection to forecast episodes of illness. DISCUSSION: This proposed contactless, large cohort study aims to obtain and combine high-dimensional, multimodal physiological, objective, and subjective data. Our work, by conceptualizing mood as a dynamic property of biological systems, will demonstrate the feasibility of incorporating individual variability in a model informing clinical trajectories and predicting relapse in BD.
Centre for Addiction and Mental Health 100 Stokes St Rm 4229 Toronto ON Canada
Department of Computer Science Dalarna University Dalarna Sweden
Department of Pharmacology University of Toronto Toronto Ontario Canada
Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
Department of Psychiatry University of Toronto Toronto Ontario Canada
Zobrazit více v PubMed
Deckersbach T, Nierenberg AA, McInnis MG, Salcedo S, Bernstein EE, Kemp DE, et al. Baseline disability and poor functioning in bipolar disorder predict worse outcomes: results from the bipolar CHOICE study. J Clin Psychiatry. 2016;77(1):100–108. doi: 10.4088/JCP.14m09210. PubMed DOI
Simon GE, Hunkeler E, Fireman B, Lee JY, Savarino J. Risk of suicide attempt and suicide death in patients treated for bipolar disorder. Bipolar Disord. 2007;9(5):526–530. doi: 10.1111/j.1399-5618.2007.00408.x. PubMed DOI
Morriss RK, Faizal MA, Jones AP, Williamson PR, Bolton C, McCarthy JP. Interventions for helping people recognise early signs of recurrence in bipolar disorder. Cochrane Database Syst Rev. 2007;2007(1):Cd004854. PubMed PMC
Kessing LV, Andersen PK, Vinberg M. Risk of recurrence after a single manic or mixed episode - a systematic review and meta-analysis. Bipolar Disord. 2018;20(1):9–17. doi: 10.1111/bdi.12593. PubMed DOI
Judd LL, Akiskal HS, Schettler PJ, Endicott J, Maser J, Solomon DA, et al. The long-term natural history of the weekly symptomatic status of bipolar I disorder. Arch Gen Psychiatry. 2002;59(6):530–537. doi: 10.1001/archpsyc.59.6.530. PubMed DOI
Franklin JC, Ribeiro JD, Fox KR, Bentley KH, Kleiman EM, Huang X, et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research. Psychol Bull. 2017;143(2):187–232. doi: 10.1037/bul0000084. PubMed DOI
Ortiz A, Maslej MM, Husain I, Daskalakis J, Mulsant BH. Apps and gaps in bipolar disorder: a systematic review on electronic monitoring for episode prediction. J Affect Disord. 2021;295:1190–1200. doi: 10.1016/j.jad.2021.08.140. PubMed DOI
Van Til K, McInnis MG, Cochran A. A comparative study of engagement in mobile and wearable health monitoring for bipolar disorder. Bipolar Disord. 2020;22(2):182–190. doi: 10.1111/bdi.12849. PubMed DOI PMC
Nelson B, McGorry PD, Wichers M, Wigman JTW, Hartmann JA. Moving from static to dynamic models of the onset of mental disorder: a review. JAMA Psychiatry. 2017;74(5):528–534. doi: 10.1001/jamapsychiatry.2017.0001. PubMed DOI
Ortiz A, Bradler K, Mowete M, MacLean S, Garnham J, Slaney C, et al. The futility of long-term predictions in bipolar disorder: mood fluctuations are the result of deterministic chaotic processes. Int J Bipolar Disord. 2021; In press. PubMed PMC
Diagnostic and statistical manual of mental disorders. 5th ed. American Psychiatric Publishing; 2013. DSM-V, http://repository.poltekkes-kaltim.ac.id/657/1/Diagnostic%20and%20statistical%20manual%20of%20mental%20disorders%20_%20DSM-5%20%28%20PDFDrive.com%20%29.pdf.
First M, Williams J, Karg R, RL S. Structured clinical interview for DSM-5, research version (SCID-5) Arlington: American Psychiatric Association; 2015.
Ortiz A, Bradler K, Moorti P, MacLean S, Husain MI, Sanches M, et al. Reduced heart rate variability is associated with higher illness burden in bipolar disorder. J Psychosom Res. 2021;145:110478. doi: 10.1016/j.jpsychores.2021.110478. PubMed DOI
Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–435. doi: 10.1192/bjp.133.5.429. PubMed DOI
Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–389. doi: 10.1192/bjp.134.4.382. PubMed DOI
Thase ME, Harrington A, Calabrese J, Montgomery S, Niu X, Patel MD. Evaluation of MADRS severity thresholds in patients with bipolar depression. J Affect Disord. 2021;286:58–63. doi: 10.1016/j.jad.2021.02.043. PubMed DOI
Hlatky MA, Boineau RE, Higginbotham MB, Lee KL, Mark DB. A brief self-administered questionnaire to determine functional capacity. Am J Cardiol. 1989;64(10):651–654. doi: 10.1016/0002-9149(89)90496-7. PubMed DOI
Passmore R, Durnin JV. Human energy expenditure. Physiol Rev. 1955;35(4):801–840. doi: 10.1152/physrev.1955.35.4.801. PubMed DOI
Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97–110. PubMed
de Zambotti M, Rosas L, Colrain IM, Baker FC. The sleep of the ring: comparison of the OURA sleep tracker against Polysomnography. Behav Sleep Med. 2017:1–15. PubMed PMC
Kahneman D, Krueger AB, Schkade DA, Schwarz N, Stone AA. A survey method for characterizing daily life experience: the day reconstruction method. Science. 2004;306(5702):1776–1780. doi: 10.1126/science.1103572. PubMed DOI
Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606–613. doi: 10.1046/j.1525-1497.2001.016009606.x. PubMed DOI PMC
Altman EG, Hedeker D, Peterson JL, Davis JM. The Altman self-rating mania scale. Biol Psychiatry. 1997;42(10):948–955. doi: 10.1016/S0006-3223(96)00548-3. PubMed DOI
Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010. PubMed DOI PMC
Carroll JK, Moorhead A, Bond R, LeBlanc WG, Petrella RJ, Fiscella K. Who uses Mobile phone health apps and does use matter? A secondary data analytics approach. J Med Internet Res. 2017;19(4):e125. doi: 10.2196/jmir.5604. PubMed DOI PMC
Perlis RH, Ostacher MJ, Patel JK, Marangell LB, Zhang H, Wisniewski SR, et al. Predictors of recurrence in bipolar disorder: primary outcomes from the systematic treatment enhancement program for bipolar disorder (STEP-BD) Am J Psychiatry. 2006;163(2):217–224. doi: 10.1176/appi.ajp.163.2.217. PubMed DOI
Bullen RJ, Cornford D, Nabney IT. Outlier detection in scatterometer data: neural network approaches. Neural Netw. 2003;16(3–4):419–426. doi: 10.1016/S0893-6080(03)00013-3. PubMed DOI
Pang G, Shen C, Cao L, Hengel AVD. Deep learning for anomaly detection: a review. ACM Comput Surv. 2021;54(2):1–38. doi: 10.1145/3439950. DOI
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–1780. doi: 10.1162/neco.1997.9.8.1735. PubMed DOI
Ortiz A, Bradler K, Garnham J, Slaney C, Alda M. Nonlinear dynamics of mood regulation in bipolar disorder. Bipolar Disord. 2015;17(2):139–149. doi: 10.1111/bdi.12246. PubMed DOI
Ortiz A, Bradler K, Hintze A. Episode forecasting in bipolar disorder: is energy better than mood? Bipolar Disord. 2018;20(5):470–476. doi: 10.1111/bdi.12603. PubMed DOI