Wastewater effluent affects behaviour and metabolomic endpoints in damselfly larvae
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35474093
PubMed Central
PMC9042914
DOI
10.1038/s41598-022-10805-9
PII: 10.1038/s41598-022-10805-9
Knihovny.cz E-zdroje
- MeSH
- bezobratlí metabolismus MeSH
- chemické látky znečišťující vodu * metabolismus MeSH
- ekosystém MeSH
- larva metabolismus MeSH
- odpadní voda * chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- odpadní voda * MeSH
Wastewater treatment plant effluents have been identified as a major contributor to increasing anthropogenic pollution in aquatic environments worldwide. Yet, little is known about the potentially adverse effects of wastewater treatment plant effluent on aquatic invertebrates. In this study, we assessed effects of wastewater effluent on the behaviour and metabolic profiles of damselfly larvae (Coenagrion hastulatum), a common aquatic invertebrate species. Four key behavioural traits: activity, boldness, escape response, and foraging (traits all linked tightly to individual fitness) were studied in larvae before and after one week of exposure to a range of effluent dilutions (0, 50, 75, 100%). Effluent exposure reduced activity and foraging, but generated faster escape response. Metabolomic analyses via targeted and non-targeted mass spectrometry methods revealed that exposure caused significant changes to 14 individual compounds (4 amino acids, 3 carnitines, 3 lysolipids, 1 peptide, 2 sugar acids, 1 sugar). Taken together, these compound changes indicate an increase in protein metabolism and oxidative stress. Our findings illustrate that wastewater effluent can affect both behavioural and physiological traits of aquatic invertebrates, and as such might pose an even greater threat to aquatic ecosystems than previously assumed. More long-term studies are now needed evaluate if these changes are linked to adverse effects on fitness. The combination of behavioural and metabolomic assessments provide a promising tool for detecting effects of wastewater effluent, on multiple biological levels of organisation, in aquatic ecosystems.
Department of Chemistry Umeå University KB C6 Linnaeus väg 10 90187 Umeå Sweden
Department of Ecology and Environmental Science Umeå University 90187 Umeå Sweden
Zobrazit více v PubMed
Ternes TA. Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 1998;32:3245–3260. doi: 10.1016/S0043-1354(98)00099-2. DOI
Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 2002;131:5–17. doi: 10.1016/S0378-4274(02)00041-3. PubMed DOI
Luo Y, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014;473–474:619–641. doi: 10.1016/j.scitotenv.2013.12.065. PubMed DOI
Ternes T, Joss A, Oehlmann J. Occurrence, fate, removal and assessment of emerging contaminants in water in the water cycle (from wastewater to drinking water) Water Res. 2015;72:1–2. doi: 10.1016/j.watres.2015.02.055. PubMed DOI
Zorita S, Mårtensson L, Mathiasson L. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Sci. Total Environ. 2009;407:2760–2770. doi: 10.1016/j.scitotenv.2008.12.030. PubMed DOI
Yang Y, Ok YS, Kim K-H, Kwon EE, Tsang YF. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017;596–597:303–320. doi: 10.1016/j.scitotenv.2017.04.102. PubMed DOI
Eggen RIL, Hollender J, Joss A, Schärer M, Stamm C. Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants. Environ. Sci. Technol. 2014;48:7683–7689. doi: 10.1021/es500907n. PubMed DOI
Kümmerer K, Dionysiou DD, Olsson O, Fatta-Kassinos D. Reducing aquatic micropollutants: Increasing the focus on input prevention and integrated emission management. Sci. Total Environ. 2019;652:836–850. doi: 10.1016/j.scitotenv.2018.10.219. PubMed DOI
Love AC, Crooks N, Ford AT. The effects of wastewater effluent on multiple behaviours in the amphipod. Gammarus pulex. Environ. Pollut. 2020;267:115386. doi: 10.1016/j.envpol.2020.115386. PubMed DOI
Rodrigues C, Guimarães L, Vieira N. Combining biomarker and community approaches using benthic macroinvertebrates can improve the assessment of the ecological status of rivers. Hydrobiolgia. 2019;839:1–24. doi: 10.1007/s10750-019-03991-7. DOI
Previšić A, et al. Aquatic macroinvertebrates under stress: Bioaccumulation of emerging contaminants and metabolomics implications. Sci. Total Environ. 2020;704:135333. doi: 10.1016/j.scitotenv.2019.135333. PubMed DOI
De Castro-Català N, Muñoz I, Riera JL, Ford AT. Evidence of low dose effects of the antidepressant fluoxetine and the fungicide prochloraz on the behavior of the keystone freshwater invertebrate Gammarus pulex. Environ. Pollut. 2017;231:406–414. doi: 10.1016/j.envpol.2017.07.088. PubMed DOI
Pisa LW, et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 2015;22:68–102. doi: 10.1007/s11356-014-3471-x. PubMed DOI PMC
Jonsson M, Fick J, Klaminder J, Brodin T. Antihistamines and aquatic insects: Bioconcentration and impacts on behavior in damselfly larvae (Zygoptera) Sci. Total Environ. 2014;472:108–111. doi: 10.1016/j.scitotenv.2013.10.104. PubMed DOI
Stoks R, Córdoba-Aguilar A. Evolutionary ecology of odonata: A complex life cycle perspective. Annu. Rev. Entomol. 2012;57:249–265. doi: 10.1146/annurev-ento-120710-100557. PubMed DOI
Janssens L, Stoks R. Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae. Aquat. Toxicol. 2017;193:210–216. doi: 10.1016/j.aquatox.2017.10.028. PubMed DOI
Brodin T, Johansson F. Conflicting selection pressures on the growth/predation-risk trade-off in a damselfly. Ecology. 2004;85:2927–2932. doi: 10.1890/03-3120. DOI
Smith BR, Blumstein DT. Fitness consequences of personality: A meta-analysis. Behav. Ecol. 2008;19:448–455. doi: 10.1093/beheco/arm144. DOI
Monserrat JM, et al. Pollution biomarkers in estuarine animals: Critical review and new perspectives. Comp. Biochem. Physiol. Part C. 2007;146:221–234. PubMed
Ågerstrand M, et al. Emerging investigator series: Use of behavioural endpoints in the regulation of chemicals. Environ. Sci. Process. Impacts. 2020;22:49–65. doi: 10.1039/C9EM00463G. PubMed DOI
Sardo AM, Soares AMVM. Assessment of the effects of the pesticide imidacloprid on the behaviour of the aquatic oligochaete Lumbriculus variegatus. Arch. Environ. Contam. Toxicol. 2010;58:648–656. doi: 10.1007/s00244-010-9470-0. PubMed DOI
Bossus MC, Guler YZ, Short SJ, Morrison ER, Ford AT. Behavioural and transcriptional changes in the amphipod Echinogammarus marinus exposed to two antidepressants, fluoxetine and sertraline. Aquat. Toxicol. 2014;151:46–56. doi: 10.1016/j.aquatox.2013.11.025. PubMed DOI
Rodrigues ACM, et al. Behavioural responses of freshwater planarians after short-term exposure to the insecticide chlorantraniliprole. Aquat. Toxicol. 2016;170:371–376. doi: 10.1016/j.aquatox.2015.10.018. PubMed DOI
Nielsen ME, Roslev P. Behavioral responses and starvation survival of Daphnia magna exposed to fluoxetine and propranolol. Chemosphere. 2018;211:978–985. doi: 10.1016/j.chemosphere.2018.08.027. PubMed DOI
Al-Badran AA, Fujiwara M, Mora MA. Effects of insecticides, fipronil and imidacloprid, on the growth, survival, and behavior of brown shrimp Farfantepenaeus aztecus. PLoS ONE. 2019;14:e0223641. doi: 10.1371/journal.pone.0223641. PubMed DOI PMC
Leonard JA, Cope WG, Barnhart MC, Bringolf RB. Metabolomic, behavioral, and reproductive effects of the synthetic estrogen 17 α-ethinylestradiol on the unionid mussel Lampsilis fasciola. Aquat. Toxicol. 2014;150:103–116. doi: 10.1016/j.aquatox.2014.03.004. PubMed DOI
Robert Michaud M, et al. Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J. Insect Physiol. 2008;54:645–655. doi: 10.1016/j.jinsphys.2008.01.003. PubMed DOI
Chou H, Pathmasiri W, Deese-Spruill J, Sumner S, Buchwalter DB. Metabolomics reveal physiological changes in mayfly larvae (Neocloeon triangulifer) at ecological upper thermal limits. J. Insect Physiol. 2017;101:107–112. doi: 10.1016/j.jinsphys.2017.07.008. PubMed DOI PMC
Hidalgo K, Beaugeard E, Renault D, Dedeine F, Lécureuil C. Physiological and biochemical responses to thermal stress vary among genotypes in the parasitic wasp Nasonia vitripennis. J. Insect Physiol. 2019;117:103909. doi: 10.1016/j.jinsphys.2019.103909. PubMed DOI
Hines A, Oladiran GS, Bignell JP, Stentiford GD, Viant MR. Direct sampling of organisms from the field and knowledge of their phenotype: Key recommendations for environmental metabolomics. Environ. Sci. Technol. 2007;41:3375–3381. doi: 10.1021/es062745w. PubMed DOI
Agbo SO, et al. Changes in Lumbriculus variegatus metabolites under hypoxic exposure to benzo(a)pyrene, chlorpyrifos and pentachlorophenol: Consequences on biotransformation. Chemosphere. 2013;93:302–310. doi: 10.1016/j.chemosphere.2013.04.082. PubMed DOI
Venter L, et al. Uncovering the metabolic response of abalone (Haliotis midae) to environmental hypoxia through metabolomics. Metabolomics. 2018;14:49. doi: 10.1007/s11306-018-1346-8. PubMed DOI
Melvin SD. Short-term exposure to municipal wastewater influences energy, growth, and swimming performance in juvenile Empire Gudgeons (Hypseleotris compressa) Aquat. Toxicol. Amst. Neth. 2016;170:271–278. doi: 10.1016/j.aquatox.2015.06.003. PubMed DOI
Du SNN, et al. Metabolic costs of exposure to wastewater effluent lead to compensatory adjustments in respiratory physiology in bluegill sunfish. Environ. Sci. Technol. 2018;52:801–811. doi: 10.1021/acs.est.7b03745. PubMed DOI
Mehdi H, Dickson FH, Bragg LM, Servos MR, Craig PM. Impacts of wastewater treatment plant effluent on energetics and stress response of rainbow darter (Etheostoma caeruleum) in the Grand River watershed. Comp. Biochem. Physiol. B. 2018;224:270–279. doi: 10.1016/j.cbpb.2017.11.011. PubMed DOI
Simmons DBD, et al. Altered expression of metabolites and proteins in wild and caged fish exposed to wastewater effluents in situ. Sci. Rep. 2017;7:17000. doi: 10.1038/s41598-017-12473-6. PubMed DOI PMC
McCallum ES, et al. Exposure to wastewater effluent affects fish behaviour and tissue-specific uptake of pharmaceuticals. Sci. Total Environ. 2017;605–606:578–588. doi: 10.1016/j.scitotenv.2017.06.073. PubMed DOI
Simmons DBD, et al. Reduced anxiety is associated with the accumulation of six serotonin reuptake inhibitors in wastewater treatment effluent exposed goldfish Carassius auratus. Sci. Rep. 2017;7:17001. doi: 10.1038/s41598-017-15989-z. PubMed DOI PMC
Gauthier PT, Vijayan MM. Municipal wastewater effluent exposure disrupts early development, larval behavior, and stress response in zebrafish. Environ. Pollut. 2020;259:113757. doi: 10.1016/j.envpol.2019.113757. PubMed DOI
Finotello S, Feckler A, Bundschuh M, Johansson F. Repeated pulse exposures to lambda-cyhalothrin affect the behavior, physiology, and survival of the damselfly larvae Ischnura graellsii (Insecta; Odonata) Ecotoxicol. Environ. Saf. 2017;144:107–114. doi: 10.1016/j.ecoenv.2017.06.014. PubMed DOI
Späth J, et al. Novel metabolomic method to assess the effect-based removal efficiency of advanced wastewater treatment techniques. Environ. Chem. 2020 doi: 10.1071/EN19270. PubMed DOI PMC
Späth J, et al. Oxylipins at intermediate larval stages of damselfly Coenagrion hastulatum as biochemical biomarkers for anthropogenic pollution. Environ. Sci. Pollut. Res. 2021 doi: 10.1007/s11356-021-12503-x. PubMed DOI PMC
Späth J, et al. Metabolomics reveals changes in metabolite profiles due to growth and metamorphosis during the on. J. Insect Physiol. 2022;136:104341. doi: 10.1016/j.jinsphys.2021.104341. PubMed DOI
Rodriguez A, et al. ToxTrac: A fast and robust software for tracking organisms. Methods Ecol. Evol. 2018;9:460–464. doi: 10.1111/2041-210X.12874. DOI
Treit D, Fundytus M. Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol. Biochem. Behav. 1988;31:959–962. doi: 10.1016/0091-3057(88)90413-3. PubMed DOI
Brodin T. Behavioral syndrome over the boundaries of life—carryovers from larvae to adult damselfly. Behav. Ecol. 2009;20:30–37. doi: 10.1093/beheco/arn111. DOI
Jonsson M, et al. High-speed imaging reveals how antihistamine exposure affects escape behaviours in aquatic insect prey. Sci. Total Environ. 2019;648:1257–1262. doi: 10.1016/j.scitotenv.2018.08.226. PubMed DOI
Gullberg J, Jonsson P, Nordström A, Sjöström M, Moritz T. Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal. Biochem. 2004;331:283–295. doi: 10.1016/j.ab.2004.04.037. PubMed DOI
Teixeira PF, et al. A multi-step peptidolytic cascade for amino acid recovery in chloroplasts. Nat. Chem. Biol. 2017;13:15–17. doi: 10.1038/nchembio.2227. PubMed DOI
Rohart F, Gautier B, Singh A, Cao K-AL. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLOS Comput. Biol. 2017;13:e1005752. doi: 10.1371/journal.pcbi.1005752. PubMed DOI PMC
Gorrochategui E, Jaumot J, Lacorte S, Tauler R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC Trends Anal. Chem. 2016;82:425–442. doi: 10.1016/j.trac.2016.07.004. DOI
Chong J, Wishart DS, Xia J. Using MetaboAnalyst 40 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 2019;68:e86. doi: 10.1002/cpbi.86. PubMed DOI
Van Gossum H, et al. Behaviour of damselfly larvae (Enallagma cyathigerum) (Insecta, Odonata) after long-term exposure to PFOS. Environ. Pollut. 2009;157:1332–1336. doi: 10.1016/j.envpol.2008.11.031. PubMed DOI
Bownik A, Ślaska B, Bochra J, Gumieniak K, Gałek K. Procaine penicillin alters swimming behaviour and physiological parameters of Daphnia magna. Environ. Sci. Pollut. Res. 2019;26:18662–18673. doi: 10.1007/s11356-019-05255-2. PubMed DOI PMC
Di Cicco M, et al. Effects of diclofenac on the swimming behavior and antioxidant enzyme activities of the freshwater interstitial crustacean Bryocamptus pygmaeus (Crustacea, Harpacticoida) Sci. Total Environ. 2021;799:149461. doi: 10.1016/j.scitotenv.2021.149461. PubMed DOI
Di Nica V, González ABM, Lencioni V, Villa S. Behavioural and biochemical alterations by chlorpyrifos in aquatic insects: An emerging environmental concern for pristine Alpine habitats. Environ. Sci. Pollut. Res. 2020;27:30918–30926. doi: 10.1007/s11356-019-06467-2. PubMed DOI
Cappello T, et al. Sex steroids and metabolic responses in mussels Mytilus galloprovincialis exposed to drospirenone. Ecotoxicol. Environ. Saf. 2017;143:166–172. doi: 10.1016/j.ecoenv.2017.05.031. PubMed DOI
Rodrigues ACM, et al. Energetic costs and biochemical biomarkers associated with esfenvalerate exposure in Sericostoma vittatum. Chemosphere. 2017;189:445–453. doi: 10.1016/j.chemosphere.2017.09.057. PubMed DOI
Ji C, et al. Proteomic and metabolomic analysis of earthworm Eisenia fetida exposed to different concentrations of 2,2′,4,4′-tetrabromodiphenyl ether. J. Proteom. 2013;91:405–416. doi: 10.1016/j.jprot.2013.08.004. PubMed DOI
Felten V, et al. Physiological and behavioural responses of Gammarus pulex (Crustacea: Amphipoda) exposed to cadmium. Aquat. Toxicol. 2008;86:413–425. doi: 10.1016/j.aquatox.2007.12.002. PubMed DOI
De Lange HJ, Peeters ETHM, Lürling M. Changes in ventilation and locomotion of Gammarus pulex (Crustacea, Amphipoda) in response to low concentrations of pharmaceuticals. Hum. Ecol. Risk Assess. Int. J. 2009;15:111–120. doi: 10.1080/10807030802615584. DOI
Ashauer R, Caravatti I, Hintermeister A, Escher BI. Bioaccumulation kinetics of organic xenobiotic pollutants in the freshwater invertebrate Gammarus pulex modeled with prediction intervals. Environ. Toxicol. Chem. 2010;29:1625–1636. doi: 10.1002/etc.175. PubMed DOI
Schroeder-Spain K, Fisher LL, Smee DL. Uncoordinated: Effects of sublethal malathion and carbaryl exposures on juvenile and adult blue crabs (Callinectes sapidus) J. Exp. Mar. Biol. Ecol. 2018;504:1–9. doi: 10.1016/j.jembe.2018.03.005. DOI
Janssens L, Stoks R. Synergistic effects between pesticide stress and predator cues: Conflicting results from life history and physiology in the damselfly Enallagma cyathigerum. Aquat. Toxicol. 2013;132–133:92–99. doi: 10.1016/j.aquatox.2013.02.003. PubMed DOI
Ernest SKM. Homeostasis. In: Jørgensen SE, Fath BD, editors. Encyclopedia of Ecology. Academic Press; 2008. pp. 1879–1884.
Karanova MV, Andreev AA. Free amino acids and reducing sugars in the freshwater shrimp Gammarus lacustris (Crustacea, Amphipoda) at the initial stage of preparation to winter season. J. Evol. Biochem. Physiol. 2010;46:335–340. doi: 10.1134/S0022093010040010. PubMed DOI
Maity S, et al. Starvation causes disturbance in amino acid and fatty acid metabolism in Diporeia. Comp. Biochem. Physiol. B. 2012;161:348–355. doi: 10.1016/j.cbpb.2011.12.011. PubMed DOI
Cappello T, et al. Impact of environmental pollution on caged mussels Mytilus galloprovincialis using NMR-based metabolomics. Mar. Pollut. Bull. 2013;77:132–139. doi: 10.1016/j.marpolbul.2013.10.019. PubMed DOI
Jiang Y, Jiao H, Sun P, Yin F, Tang B. Metabolic response of Scapharca subcrenata to heat stress using GC/MS-based metabolomics. PeerJ. 2020;8:e8445. doi: 10.7717/peerj.8445. PubMed DOI PMC
Roznere I, Watters GT, Wolfe BA, Daly M. Effects of relocation on metabolic profiles of freshwater mussels: Metabolomics as a tool for improving conservation techniques. Aquat. Conserv. Mar. Freshw. Ecosyst. 2017;27:919–926. doi: 10.1002/aqc.2776. DOI
Cappello T, Maisano M, Mauceri A, Fasulo S. 1H NMR-based metabolomics investigation on the effects of petrochemical contamination in posterior adductor muscles of caged mussel Mytilus galloprovincialis. Ecotoxicol. Environ. Saf. 2017;142:417–422. doi: 10.1016/j.ecoenv.2017.04.040. PubMed DOI
Cao C, Wang W-X. Chronic effects of copper in oysters Crassostrea hongkongensis under different exposure regimes as shown by NMR-based metabolomics. Environ. Toxicol. Chem. 2017;36:2428–2435. doi: 10.1002/etc.3780. PubMed DOI
Aru V, Sarais G, Savorani F, Engelsen SB, Cesare Marincola F. Metabolic responses of clams, Ruditapes decussatus and Ruditapes philippinarum, to short-term exposure to lead and zinc. Mar. Pollut. Bull. 2016;107:292–299. doi: 10.1016/j.marpolbul.2016.03.054. PubMed DOI
Tufi S, Stel JM, de Boer J, Lamoree MH, Leonards PEG. Metabolomics to explore imidacloprid-induced toxicity in the central nervous system of the freshwater snail Lymnaea stagnalis. Environ. Sci. Technol. 2015;49:14529–14536. doi: 10.1021/acs.est.5b03282. PubMed DOI
Tanguy A, Boutet I, Moraga D. Molecular characterization of the glutamine synthetase gene in the Pacific oyster Crassostrea gigas: Expression study in response to xenobiotic exposure and developmental stage. Biochim. Biophys. Acta BBA. 2005;1681:116–125. doi: 10.1016/j.bbaexp.2004.10.010. PubMed DOI
Chen X, Shi X, Gan F, Huang D, Huang K. Glutamine starvation enhances PCV2 replication via the phosphorylation of p38 MAPK, as promoted by reducing glutathione levels. Vet. Res. 2015;46:32. doi: 10.1186/s13567-015-0168-1. PubMed DOI PMC
Leroy D, Haubruge E, De Pauw E, Thomé JP, Francis F. Development of ecotoxicoproteomics on the freshwater amphipod Gammarus pulex: Identification of PCB biomarkers in glycolysis and glutamate pathways. Ecotoxicol. Environ. Saf. 2010;73:343–352. doi: 10.1016/j.ecoenv.2009.11.006. PubMed DOI
Ch R, Singh AK, Pandey P, Saxena PN, Mudiam MKR. Identifying the metabolic perturbations in earthworm induced by cypermethrin using gas chromatography-mass spectrometry based metabolomics. Sci. Rep. 2015;5:15674. doi: 10.1038/srep15674. PubMed DOI PMC
Simpson JW, Allen K, Awapara J. Free amino acids in some aquatic invertebrates. Biol. Bull. 1959;117:371–381. doi: 10.2307/1538916. DOI
Fu Q, Scheidegger A, Laczko E, Hollender J. Metabolomic profiling and toxicokinetics modeling to assess the effects of the pharmaceutical diclofenac in the aquatic invertebrate Hyalella azteca. Environ. Sci. Technol. 2021;55:7920–7929. doi: 10.1021/acs.est.0c07887. PubMed DOI
Tikunov AP, Johnson CB, Lee H, Stoskopf MK, Macdonald JM. Metabolomic investigations of american oysters using 1H-NMR spectroscopy. Mar. Drugs. 2010;8:2578–2596. doi: 10.3390/md8102578. PubMed DOI PMC
Gülçin İ. Antioxidant and antiradical activities of l-carnitine. Life Sci. 2006;78:803–811. doi: 10.1016/j.lfs.2005.05.103. PubMed DOI
Yuan D, et al. Ancestral genetic complexity of arachidonic acid metabolism in Metazoa. Biochim. Biophys. Acta. 2014;1841:1272–1284. doi: 10.1016/j.bbalip.2014.04.009. PubMed DOI
Garreta-Lara E, et al. Effect of psychiatric drugs on Daphnia magna oxylipin profiles. Sci. Total Environ. 2018;644:1101–1109. doi: 10.1016/j.scitotenv.2018.06.333. PubMed DOI
Dwyer GK, Stoffels RJ, Rees GN, Shackleton ME, Silvester E. A predicted change in the amino acid landscapes available to freshwater carnivores. Freshw. Sci. 2017;37:108–120. doi: 10.1086/696128. DOI