The associations between health-related physical fitness and fasting blood glucose in war veterans: a population-based study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
35487937
PubMed Central
PMC9055040
DOI
10.1038/s41598-022-11059-1
PII: 10.1038/s41598-022-11059-1
Knihovny.cz E-zdroje
- MeSH
- krevní glukóza * MeSH
- lidé MeSH
- omezení příjmu potravy MeSH
- průřezové studie MeSH
- tělesná výkonnost MeSH
- veteráni váleční * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- krevní glukóza * MeSH
The main purpose of the study was to analyze the associations between health-related physical fitness and fasting blood glucose in war veterans. In this cross-sectional study, we recruited 764 men and women aged 45-75 years, who were part of the Homeland War between 1990 and 1995 (33.5% women). Health-related physical fitness included: (1) fat mass and fat-free mass (body composition), (2) push-ups in 30 s (muscular dynamic endurance of upper extremities), (3) sit-ups in 30 s (repetitive upper body strength), (4) chair-stands in 30 s (lower body strength), (5) sit-and-reach test (flexibility) and (6) the 2-min step test (cardiorespiratory function). Laboratory measurement of fasting blood glucose was performed according to standardized procedures in resting seated position after a 12-h overnight fast. Generalized estimating equations with multiple regression models were used to calculate the associations between health-related physical fitness and fasting blood glucose. In men, fasting blood glucose was significantly correlated with fat-free mass (β = - 0.25, p < 0.001), push-ups in 30 s (β = - 0.55, p < 0.001), chair-stands in 30 s (β = - 0.50, p < 0.001), sit-ups in 30 s (r = - 0.45, p < 0.001), the sit-and reach test (r = - 0.46, p < 0.001) and the 2-min step test (r = - 0.19, p < 0.001), while fat mass was positively correlated with fasting blood glucose (β = 0.14, p = 0.004). In women, fasting blood glucose was significantly correlated with fat mass (β = 0.20, p = 0.002), fat-free mass (β = - 0.15, p = 0.014), push-ups in 30 s (β = - 0.49, p < 0.001), chair-stands in 30 s (β = - 0.43, p < 0.001), sit-ups in 30 s (β = - 0.52, p < 0.001), the sit-and reach test (β = - 0.40, p < 0.001) and the 2-min step test (β = - 0.35, p < 0.001). This study shows that fasting blood glucose may be predicted by health-related physical fitness test in war veterans.
Home of Croatian Veterans Zagreb Croatia
Recrutiment and Examination Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Norton L, Norton K, Lewis N. Exercise training improves fasting glucose control. Open Access J. Sports Med. 2012;3:209–214. doi: 10.2147/OAJSM.S37065. PubMed DOI PMC
Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease. A systematic review of the evidence. J. Am. Coll. Cardiol. 2015;55:1310–1317. doi: 10.1016/j.jacc.2009.10.060. PubMed DOI
Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care. 2013;40:195–211. doi: 10.1016/j.pop.2012.11.003. PubMed DOI PMC
Bourne RR, Stevens GA, White RA, et al. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob. Health. 2013;1:339–349. doi: 10.1016/S2214-109X(13)70113-X. PubMed DOI
World Health Organization. Health Topic: Diabetes. Geneva, Switzerland: WHO Press, 2021. https://www.who.int/news-room/fact-sheets/detail/diabetes. Assessed 12 Sept 2021.
Munsters M, Saris WH. Effect of meal frequency on metabolic profiles and substrate partitioning in lean healthy males. PLoS One. 2012;7:38632. doi: 10.1371/journal.pone.0038632. PubMed DOI PMC
Emerging Risk Factors Collaboration. Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–2222. doi: 10.1016/S0140-6736(10)60484-9. PubMed DOI PMC
Ryan AS. Insulin resistance with aging: effects of diet and exercise. Sports Med. 2000;30:327–346. doi: 10.2165/00007256-200030050-00002. PubMed DOI
Morton GJ, Schwartz MW. Leptin and the central nervous system control of glucose metabolism. Physiol. Rev. 2011;91:389–411. doi: 10.1152/physrev.00007.2010. PubMed DOI PMC
Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and type 2 diabetes. The American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33:147–167. doi: 10.2337/dc10-9990. PubMed DOI PMC
Bjørnholt JV, Eriksen G, Aaser E, et al. Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men. Diabetes Care. 1999;22:45–49. doi: 10.2337/diacare.22.1.45. PubMed DOI
Lawes CM, Parag V, Bennett DA, et al. Asia Pacific Cohort Studies Collaboration Blood glucose and risk of cardiovascular disease in the Asia Pacific region. Diabetes Care. 2004;27:2836–2842. doi: 10.2337/diacare.27.12.2836. PubMed DOI
Omar A, Husain MN, Jamil AT, et al. Effect of physical activity on fasting blood glucose and lipid profile among low income housewives in the MyBFF@home study. BMC Women’s Health. 2018;18:103. doi: 10.1186/s12905-018-0598-9. PubMed DOI PMC
Adams OP. The impact of brief high-intensity exercise on blood glucose levels. Diabetes Metab. Syndr. Obes. 2013;6:113–122. doi: 10.2147/DMSO.S29222. PubMed DOI PMC
Herbst A, Kapellen T, Schober E, et al. Impact of regular physical activity on blood glucose control and cardiovascular risk factors in adolescents with type 2 diabetes mellitus-a multicenter study of 578 patients from 225 centres. Pediatr. Diabetes. 2015;16:204–210. doi: 10.1111/pedi.12144. PubMed DOI
Trovati M, Carta Q, Cavalot F, et al. Influence of physical training on blood glucose control, glucose tolerance, insulin secretion, and insulin action in non-insulin-dependent diabetic patients. Diabetes Care. 1984;7:416–420. doi: 10.2337/diacare.7.5.416. PubMed DOI
Jenkins NT, Hagberg JM. Aerobic training effects on glucose tolerance in prediabetic and normoglycemic humans. Med. Sci. Sports Exerc. 2011;43:2231–2240. doi: 10.1249/MSS.0b013e318223b5f9. PubMed DOI
Zheng X, Qi Y, Bi L, et al. Effects of exercise on blood glucose and glycemic variability in type 2 diabetic patients with dawn phenomenon. Biomed. Res. Int. 2020;2020:6408724. PubMed PMC
Ross R, Janssen I, Dawson J, et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes. Res. 2004;12:789–798. doi: 10.1038/oby.2004.95. PubMed DOI
Slentz CA, Tanner CJ, Bateman LA, et al. Effects of exercise training intensity on pancreatic β-cell function. Diabetes Care. 2009;32:1807–1811. doi: 10.2337/dc09-0032. PubMed DOI PMC
Boulé NG, Weisnagel SJ, Lakka TA, et al. Effects of exercise training on glucose homeostasis: the HERITAGE family study. Diabetes Care. 2005;28:108–114. doi: 10.2337/diacare.28.1.108. PubMed DOI
Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100:126–131. PubMed PMC
Martínez-Vizcaíno V, Sánchez-López M. Relación entre actividad física y condición física en niños y adolescentes [Relationship between physical activity and physical fitness in children and adolescents] Rev. Esp. Cardiol. 2008;61:108–111. doi: 10.1157/13116196. PubMed DOI
Loprinzi PD, Pariser G. Cardiorespiratory fitness levels and its correlates among adults with diabetes. Cardiopulm. Phys. Ther. J. 2013;24:27–34. doi: 10.1097/01823246-201324020-00005. PubMed DOI PMC
Wei M, Gibbons LW, Mitchell TL, Kampert JB, Lee CD, Blair SN. The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Ann. Intern. Med. 1999;130:89–96. doi: 10.7326/0003-4819-130-2-199901190-00002. PubMed DOI
Solomon TP, Malin SK, Karstoft K, et al. Association between cardiorespiratory fitness and the determinants of glycemic control across the entire glucose tolerance continuum. Diabetes Care. 2015;38:921–929. doi: 10.2337/dc14-2813. PubMed DOI PMC
Lime-Ma F, Cotter JA, Schick EE. The effect of acute hyperglycemia on muscular strength, power and endurance. Int. J. Exerc. Sci. 2017;10:390–396. PubMed PMC
Lee J, Kim D, Kim C. Resistance training for glycemic control, muscular strength, and lean body mass in old type 2 diabetic patients: a meta-analysis. Diabetes Ther. 2017;8:459–473. doi: 10.1007/s13300-017-0258-3. PubMed DOI PMC
Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 2009;360:129–139. doi: 10.1056/NEJMoa0808431. PubMed DOI
Peraica T, Vidović A, Petrović ZK, Kozarić-Kovačić D. Quality of life of Croatian veterans' wives and veterans with posttraumatic stress disorder. Health Qual. Life Outcomes. 2014;12:136. doi: 10.1186/s12955-014-0136-x. PubMed DOI PMC
Williamson V, Harwood H, Greenberg K, Stevelink SAM, Greenberg N. Impact of military service on physical health later in life: a qualitative study of geriatric UK veterans and non-veterans. BMJ Open. 2019;9:028189. PubMed PMC
Kasović M, Kalčik Z, Štefan L, Štefan A, Knjaz D, Braš M. Normative data for blood pressure in Croatian war veterans: a population-based study. Int. J. Environ. Res. Public Health. 2021;18:4175. doi: 10.3390/ijerph18084175. PubMed DOI PMC
Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods. 2009;41:1149–1160. doi: 10.3758/BRM.41.4.1149. PubMed DOI
World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053. PubMed DOI
Internet page: strobe-statement.org/checklists/ assessed on the 30th of March 2022.
Mišigoj-Duraković M, Sorić M, Matika D, Jukić I, Duraković Z. Which is more important for reducing the odds of metabolic syndrome in men: Cardiorespiratory or muscular fitness? Obesity (Silver Spring) 2016;24:238–244. doi: 10.1002/oby.21264. PubMed DOI
Rikli RE, Jones CJ. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist. 2013;53:255–267. doi: 10.1093/geront/gns071. PubMed DOI
Suni JH, Oja P, Miilunpalo SI, Pasanen ME, Vuori IM, Bös K. Health-related fitness test battery for adults: associations with perceived health, mobility, and back function and symptoms. Arch. Phys. Med. Rehabil. 1998;79:559–569. doi: 10.1016/S0003-9993(98)90073-9. PubMed DOI
Yee XS, Ng YS, Allen JC, et al. Performance on sit-to-stand tests in relation to measures of functional fitness and sarcopenia diagnosis in community-dwelling older adults. Eur. Rev. Aging Phys. Act. 2021;18:1. doi: 10.1186/s11556-020-00255-5. PubMed DOI PMC
Abe T, Yaginuma Y, Fujita E, Thiebaud RS, Kawanishi M, Akamine T. Associations of sit-up ability with sarcopenia classification measures in Japanese older women. Interv. Med. Appl. Sci. 2016;8:152–157. PubMed PMC
PCPFS (President's Council on Physical Fitness and Sports). The president's challenge physical fitness test: V-sit reach. 2012. https://www.presidentschallenge.org/challenge/physical/activities/v-sit-reach.shtml. Assessed 12 Sept 2021.
Pietiläinen KH, Kaye S, Karmi A, Suojanen L, Rissanen A, Virtanen KA. Agreement of bioelectrical impedance with dual-energy X-ray absorptiometry and MRI to estimate changes in body fat, fat-free and visceral fat during a 12-month weight loss intervention. Br. J. Nutr. 2013;9:1910–1916. doi: 10.1017/S0007114512003698. PubMed DOI
Lee MM, Jebb SA, Oke J, Piernas C. Reference values for fat-free mass and fat mass measured by bioelectrical impedance in 390,565 UK adults. J. Cachexia Sarcopenia Muscle. 2020;11:487–496. doi: 10.1002/jcsm.12523. PubMed DOI PMC
Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009;41:3–13. doi: 10.1249/MSS.0b013e31818cb278. PubMed DOI
Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2. Erlbaum; 1988.
Kim K, Park SM. Association of muscle mass and fat mass with insulin resistance and the prevalence of metabolic syndrome in Korean adults: a cross-sectional study. Sci. Rep. 2018;8:2703. doi: 10.1038/s41598-018-21168-5. PubMed DOI PMC
Mehdad S, Hamrani A, El Kari K, et al. Body mass index, waist circumference, body fat, fasting blood glucose in a sample of Moroccan adolescents aged 11–17 years. J. Nutr. Metab. 2012;2012:510458. doi: 10.1155/2012/510458. PubMed DOI PMC
Ghachem A, Lagacé JC, Brochu M, Dionne IJ. Fat-free mass and glucose homeostasis: is greater fat-free mass an independent predictor of insulin resistance? Aging Clin. Exp. Res. 2019;31:447–454. doi: 10.1007/s40520-018-0993-y. PubMed DOI
Kim CH, Kim HK, Kim EH, Bae SJ, Park JY. Association between changes in body composition and risk of developing Type 2 diabetes in Koreans. Diabet. Med. 2014;31:1393–1398. doi: 10.1111/dme.12527. PubMed DOI
Jensen TE, Richter EA. Regulation of glucose and glycogen metabolism during and after exercise. J. Physiol. 2012;590:1069–1076. doi: 10.1113/jphysiol.2011.224972. PubMed DOI PMC
Kirwan JP, Solomon TP, Wojta DM, Staten MA, Holloszy JO. Effects of 7 days of exercise training on insulin sensitivity and responsiveness in type 2 diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2009;297:151–156. doi: 10.1152/ajpendo.00210.2009. PubMed DOI PMC
Bondarev D, et al. Physical performance in relation to menopause status and physical activity. Menopause. 2018;25:1432–1441. doi: 10.1097/GME.0000000000001137. PubMed DOI