Deep learning model for deep fake face recognition and detection

. 2022 ; 8 () : e881. [epub] 20220222

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35494811

Deep Learning is an effective technique and used in various fields of natural language processing, computer vision, image processing and machine vision. Deep fakes uses deep learning technique to synthesis and manipulate image of a person in which human beings cannot distinguish the fake one. By using generative adversarial neural networks (GAN) deep fakes are generated which may threaten the public. Detecting deep fake image content plays a vital role. Many research works have been done in detection of deep fakes in image manipulation. The main issues in the existing techniques are inaccurate, consumption time is high. In this work we implement detecting of deep fake face image analysis using deep learning technique of fisherface using Local Binary Pattern Histogram (FF-LBPH). Fisherface algorithm is used to recognize the face by reduction of the dimension in the face space using LBPH. Then apply DBN with RBM for deep fake detection classifier. The public data sets used in this work are FFHQ, 100K-Faces DFFD, CASIA-WebFace.

Zobrazit více v PubMed

Afchar D, Nozick V, Yamagishi J, Echizen I. Mesonet: a compact facial video forgery detection network. 2018 IEEE international workshop on information forensics and security (WIFS); Piscataway. 2018. pp. 1–7.

Allcott H, Gentzkow M. Social media and fake news in the 2016 election. Journal of economic perspectives. 2017;31(2):211–36. doi: 10.1257/jep.31.2.211. DOI

Arasaratnam I, Haykin S, Hurd TR. Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Transactions on Signal Processing. 2010;58(10):4977–4993. doi: 10.1109/TSP.2010.2056923. DOI

Arunkumar P, Kannimuthu S. Mining big data streams using business analytics tools: a birds eye view on moa and samoa. International Journal of Business Intelligence and Data Mining. 2020;17(2):226–236.

Badale A, Castelino L, Darekar C, Gomes J. Deep fake detection using neural networks. 15th IEEE international conference on advanced video and signal based surveillance (AVSS); Piscataway. 2018.

Cellan-Jones R. Deepfake videos double in nine months. https://www.bbc.com/news/technology-49961089#::˜text=New%20research%20shows%20an%20alarming,is%20becoming%20a%20lucrative%20business BBC News. 2019

Chen P, Liu J, Liang T, Zhou G, Gao H, Dai J, Han J. Fsspotter: spotting face-swapped video by spatial and temporal clues. 2020 IEEE international conference on multimedia and expo (ICME); Piscataway. 2020. pp. 1–6.

Citron DK. How deepfakes undermine truth and threaten democracy. https://www. Ted.com/talks/danielle_citron_how_deepfakes_undermine_truth_and_threaten_democracy?language=en 2019

Dang H, Liu F, Stehouwer J, Liu X, Jain AK. On the detection of digital face manipulation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; Piscataway. 2020. pp. 5781–5790.

Guarnera L, Giudice O, Battiato S. Deepfake detection by analyzing convolutional traces. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops; Piscataway. 2020. pp. 666–667.

Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Computation. 2006;18(7):1527–1554. doi: 10.1162/neco.2006.18.7.1527. PubMed DOI

Hulzebosch N, Ibrahimi S, Worring M. Detecting cnn-generated facial images in real-world scenarios. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops; Piscataway. 2020. pp. 642–643.

Jagdale R, Shah S. Information and communication technology for intelligent systems. Singapore: Springer; 2019. A novel algorithm for video super-resolution; pp. 533–544.

Kalman RE. A new approach to linear filtering and prediction problems. Journal of Basic Engineering. 1960;82(1):35–45. doi: 10.1115/1.3662552. DOI

Korshunov P, Marcel S. Deepfakes: a new threat to face recognition? assessment and detection. 2018. arXiv:1812.08685

Lazer DM, Baum MA, Benkler Y, Berinsky AJ, Greenhill KM, Menczer F, Metzger MJ, Nyhan B, Pennycook G, Rothschild D, et al. The science of fake news. Science. 2018;359(6380):1094–1096. doi: 10.1126/science.aao2998. PubMed DOI

Li L, Bao J, Zhang T, Yang H, Chen D, Wen F, Guo B. Face x-ray for more general face forgery detection. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; Piscataway. 2020. pp. 5001–5010.

Li Y, Lyu S. Exposing deepfake videos by detecting face warping artifacts. 2018arXiv:1811.00656

Mahendhiran P, Kannimuthu S. Deep learning techniques for polarity classification in multimodal sentiment analysis. International Journal of Information Technology & Decision Making. 2018;17(03):883–910.

Maheswaran S, Kuppusamy P, Ramesh S, Sundararajan T, Yupapin P. Refractive index sensor using dual core photonic crystal fiber–glucose detection applications. Results in Physics. 2018;11:577–578. doi: 10.1016/j.rinp.2018.09.055. DOI

Maheswaran S, Sathesh S, Priyadharshini P, Vivek B. Identification of artificially ripened fruits using smart phones. 2017 international conference on intelligent computing and control (I2C2); Piscataway. 2017. pp. 1–6.

Maras M.-H, Alexandrou A. Determining authenticity of video evidence in the age of artificial intelligence and in the wake of deepfake videos. The International Journal of Evidence & Proof. 2019;23(3):255–262. doi: 10.1177/1365712718807226. DOI

Marra F, Saltori C, Boato G, Verdoliva L. Incremental learning for the detection and classification of gan-generated images. 2019 IEEE international workshop on information forensics and security (WIFS); Piscataway. 2019. pp. 1–6.

Nataraj L, Mohammed TM, Manjunath B, Chandrasekaran S, Flenner A, Bappy JH, Roy-Chowdhury AK. Detecting GAN generated fake images using co-occurrence matrices. Electronic Imaging. 2019;2019(5):532–1. doi: 10.2352/ISSN.2470-1173.2019.5.MWSF-532. DOI

Neves JC, Tolosana R, Vera-Rodriguez R, Lopes V, Proença H, Fierrez J. Ganprintr: Improved fakes and evaluation of the state of the art in face manipulation detection. IEEE Journal of Selected Topics in Signal Processing. 2020;14(5):1038–1048. doi: 10.1109/JSTSP.2020.3007250. DOI

Nguyen HM, Derakhshani R. Eyebrow recognition for identifying deepfake videos. 2020 international conference of the biometrics special interest group (BIOSIG); Piscataway. 2020. pp. 1–5.

Ranjan P, Patil S, Kazi F. Improved generalizability of deep-fakes detection using transfer learning based CNN framework. 2020 3rd international conference on information and computer technologies (ICICT); Piscataway. 2020. pp. 86–90.

Tolosana R, Vera-Rodriguez R, Fierrez J, Morales A, Ortega-Garcia J. Deepfakes and beyond: a survey of face manipulation and fake detection. Information Fusion. 2020;64:131–148. doi: 10.1016/j.inffus.2020.06.014. DOI

Vivek B, Maheswaran S, Keerthana P, Sathesh S, Bringeraj S, Sri RA, Sulthana SA. Low cost raspberry pi oscilloscope; 2018 international conference on intelligent computing and communication for smart World (I2C2SW); Piscataway. 2018. pp. 386–390.

Wang R, Ma L, Juefei-Xu F, Xie X, Wang J, Liu Y. FakeSpotter: a simple baseline for spotting AI-synthesized fake faces. 20191909.06122

Yadav D, Salmani S. Deepfake: a survey on facial forgery technique using generative adversarial network. 2019 International conference on intelligent computing and control systems (ICCS); Piscataway. 2019. pp. 852–857.

Yang X, Li Y, Lyu S. Exposing deep fakes using inconsistent head poses. ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP); Piscataway. 2019. pp. 8261–8265.

Yu N, Davis L, Fritz M. Attributing fake images to gans: analyzing fingerprints in generated images. 2018;2arXiv:1811.08180

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...