Perimortem dynamics of blood potassium concentration in patients dying in intensive care unit: A prospective nested cohort study

. 2022 Jul ; 67 (4) : 1550-1556. [epub] 20220504

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35506746

Grantová podpora
1004120 Grantová Agentura, Univerzita Karlova
COOPERATIO ICM Univerzita Karlova v Praze
the Karel Pavlik Foundation

To enable diagnosis of hyperkalemia from the perimortem blood sample, we aim to describe the natural dynamics of blood potassium [K+ ] in patients dying after withdrawal of care while in an intensive care unit. In a nested sub-study of international Death Prediction and Physiology after Removal of Therapy (DePPaRT) project, we obtained serial whole-blood samples and analyzed ions and acid-base parameters in 23 patients just before life-sustaining treatment withdrawal, at the time of death, and after 5 and 30 min after death. Of the 631 patients in the DePPaRT study, we obtained consent and enrolled 23 subjects in the [K+ ] sub-study (12 M, 11F, aged 73 ± 14 years), mostly dying from irreversible brain damage or multi-organ failure. Blood [K+ ] rose from the median 4.3 (IQR 3.9; 4.8) mEq/L at treatment withdrawal to 5.2 (IQR 5.0; 6.8) mEq/L at death and then to 5.85 (IQR 5.2; 6.8) mEq/L after 30 min (mean rise of +0.64 mEq.L-1 .h-1 ). These changes were associated with progressive lactic and hypercapnic acidemia. After correcting the measured [K+] for pH by subtracting 0.6 mEq/L from [K+] for every 0.1 pH decrease from 7.40, the calculated [K+] remained normal or decreased from that measured at treatment withdrawal. In contrast to the late autolysis phase, the early changes of blood [K+ ] after death are slow and can be fully explained by progressive acidemia. Our data suggest that the diagnosis of hyperkalemia at death from a blood sample obtained within 30 min after death can be made by adjusting the [K+] concentration to a pH 7.40.

Zobrazit více v PubMed

Gumz ML, Rabinowitz L, Wingo CS. An integrated view of potassium homeostasis. N Engl J Med. 2015;373(1):60-72. https://doi.org/10.1056/NEJMra1313341

Hunter RW, Bailey MA. Hyperkalemia: Pathophysiology, risk factors and consequences. Nephrol Dial Transplant. 2019;34((Suppl 3)):iii2-11. https://doi.org/10.1093/ndt/gfz206

Fejfar Z. A practical approach to cardiac anesthesia, 2nd edition. Edited by Frederick a. Hensley, Jr., and Donald E. Martin. Little, Brown and Company, Boston (1995) 7 13 pages, illustrated, $59.95 ISBN: 0-316-35786-3. Clin Cardiol. 1996;19(7):601-2. https://doi.org/10.1002/clc.4960190718

Gawande A, Denno DW, Truog RD, Waisel D. Physicians and execution-highlights from a discussion of lethal injection. N Engl J Med. 2008;358(5):448-51. https://doi.org/10.1056/NEJMp0800378

Kothari D, Kothari S, Agrawal J. Potassium chloride: a high risk drug for medication error. Indian J Anaesth. 2012;56(1):90-1. https://doi.org/10.4103/0019-5049.93357

Palmiere C, Scarpelli MP, Varlet V, Baumann P, Michaud K, Augsburger M. Fatal intravenous injection of potassium: is postmortem biochemistry useful for the diagnosis? Forensic Sci Int. 2017;274:27-32. https://doi.org/10.1016/j.forsciint.2016.11.035

Coulibaly B, Piercecchi-Marti M-D, Bartoli C, Liprandi A, Léonetti G, Pellissier J-F. Lethal injection of potassium chloride: first description of the pathological appearance of organs. J Appl Toxicol. 2010;30(4):378-80. https://doi.org/10.1002/jat.1500

Bertol E, Politi L, Mari F. Death by potassium chloride intravenous injection: evaluation of analytical detectability. J Forensic Sci. 2012;57(1):273-5. https://doi.org/10.1111/j.1556-4029.2011.01907.x

Dhanani S, Hornby L, van Beinum A, Scales NB, Hogue M, Baker A, et al. Resumption of cardiac activity after withdrawal of life-sustaining measures. N Engl J Med. 2021;384(4):345-52. https://doi.org/10.1056/NEJMoa2022713

Larivière S. When is dead really dead? The death prediction and physiology after removal of therapy study (DePPaRT study). Canadian Donation and Transplantation Research Program. [cited 2022 Apr 16]. Available from: https://cdtrp.ca/en/deppart-study/

Burnell JM, Scribner BH, Uyeno BT, Villamil MF. The effect in humans of extracellular pH change on the relationship between serum potassium concentration and intracellular potassium. J Clin Invest. 1956;35(9):935-9. https://doi.org/10.1172/JCI103352

Adrogué HJ, Madias NE. Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med. 1981;71(3):456-67. https://doi.org/10.1016/0002-9343(81)90182-0

CLSI standards & guidelines: Shop for CLSI standards. Clinical & Laboratory Standards Institute. [cited 2021 Oct 5]. Available from: https://clsi.org/standards/

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4(43):1686. https://doi.org/10.21105/joss.01686

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1-48. https://doi.org/10.18637/jss.v067.i01

Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82(13):1-26. https://doi.org/10.18637/jss.v082.i13

emmeans package - RDocumentation. [cited 2022 Apr 16]. Available from: https://www.rdocumentation.org/packages/emmeans/versions/1.7.3

R: The R project for statistical computing [cited 2021 Oct 18]. Available from: https://www.r-project.org/

Makoff DL, da Silva JA, Rosenbaum BJ, Levy SE, Maxwell MH. Hypertonic expansion: acid-base and electrolyte changes. Am J Physiol. 1970;218(4):1201-7. https://doi.org/10.1152/ajplegacy.1970.218.4.1201

Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest. 1991;87(6):1953-7. https://doi.org/10.1172/JCI115221

Williams ME, Rosa RM, Silva P, Brown RS, Epstein FH. Impairment of extrarenal potassium disposal by alpha-adrenergic stimulation. N Engl J Med. 1984;311(3):145-9. https://doi.org/10.1056/NEJM198407193110303

Ellingsen O. Myocardial potassium balance during adrenergic stimulation. J Oslo City Hosp. 1989;39(4-5):39-51.

Walia BN, Chandra RK, Sarin GS, Ghai OP. Preterminal and postmortem changes in serum-potassium of children. Lancet Lond Engl. 1963;1(7292):1187-8. https://doi.org/10.1016/s0140-6736(63)92481-4

Singh D, Prashad R, Parkash C, Bansal YS, Sharma SK, Pandey AN. Linearization of the relationship between serum sodium, potassium concentration, their ratio and time since death in Chandigarh zone of north-West India. Forensic Sci Int. 2002;130(1):1-7. https://doi.org/10.1016/s0379-0738(02)00267-0

Jashnani KD, Kale SA, Rupani AB. Vitreous humor: biochemical constituents in estimation of postmortem interval. J Forensic Sci. 2010;55(6):1523-7. https://doi.org/10.1111/j.1556-4029.2010.01501.x

Bortolotti F, Pascali JP, Davis GG, Smith FP, Brissie RM, Tagliaro F. Study of vitreous potassium correlation with time since death in the postmortem range from 2 to 110 hours using capillary ion analysis. Med Sci Law. 2011;51(Suppl 1):S20-3. https://doi.org/10.1258/msl.2010.010063

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...