Diffusivity and hydrophobic hydration of hydrocarbons in supercritical CO2 and aqueous brine
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35515164
PubMed Central
PMC9057232
DOI
10.1039/d0ra06499h
PII: d0ra06499h
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
CO2 injection (EOR and sequestration technique) creates the amalgamation of hydrocarbons, CO2, and aqueous brine in the subsurface. In this study, molecular dynamics (MD) simulations were used to investigate the diffusivity of hydrocarbon molecules in a realistic scenario of supercritical CO2 (SC-CO2) injection in the subsurface over a wide range of pressures (50 < P < 300 bar) and aqueous brine concentrations (0, 2, and 5% brine). To overcome existing challenges in traditional diffusivity calculation approaches, we took advantage of fundamental molecular-based methods, along with further verification of results by previously published experimental data. In this regard, computational methods and MD simulations were employed to compute diffusion coefficients of hydrocarbons (benzene and pentane). It was found that the presence of water and salt affects the thermodynamic properties of molecules where the intermolecular interactions caused the hydrophobic hydration of hydrocarbons coupled with ionic hydration due to hydrogen bond and ion-dipole interactions. Based on these results, it is demonstrated that the formation of water clusters in the SC-CO2 solvent is a major contributor to the diffusion of hydrophobic molecules. The outcome at different pressure conditions showed that hydrocarbons always would diffuse less in the presence of water. The slopes of linearly fitted MSD of benzene and pentane infinitely diluted in SC-CO2 is around 13 to 20 times larger than the slope with water molecules (4 wt%). When pressure increases (100-300 bar), the diffusion coefficients (D) of benzene and pentane decreases (around 1.2 × 10-9 to 0.4 × 10-9 and 2 × 10-9 to 1 × 10-9 m2 s-1, respectively). Furthermore, brine concentration generally plays a negative role in reducing the diffusivity of hydrocarbons due to the formation of water clusters as a result of hydrophobic and ionic hydration. Under the SC-CO2 rich (injection) system in the shale reservoir, the diffusion of hydrocarbon is correlated to the efficiency of hydrocarbon flow/recovery. Ultimately, this study will guide us to better understand the phenomena that would occur in nanopores of shale that undergo EOR or are becoming a target of CO2 sequestration.
College of Petroleum Engineering China University of Petroleum 102249 Beijing PR China
Department of Petroleum Engineering Amirkabir University of Technology Tehran Iran
Department of Petroleum Engineering University of North Dakota Grand Forks ND 58202 USA
Zobrazit více v PubMed
Alvarado V. Manrique E. Enhanced Oil Recovery: An Update Review. Energies. 2010;3(9):1529–1575. doi: 10.3390/en3091529. doi: 10.3390/en3091529. DOI
Jia B. Tsau J.-S. Barati R. A Review of the Current Progress of CO2 Injection EOR and Carbon Storage in Shale Oil Reservoirs. Fuel. 2019;236:404–427. doi: 10.1016/J.FUEL.2018.08.103. doi: 10.1016/j.fuel.2018.08.103. DOI
Brunner G. Applications of Supercritical Fluids. Annu. Rev. Chem. Biomol. Eng. 2010;1(1):321–342. doi: 10.1146/annurev-chembioeng-073009-101311. doi: 10.1146/annurev-chembioeng-073009-101311. PubMed DOI
Vaz R. V. Gomes J. R. B. Silva C. M. Molecular Dynamics Simulation of Diffusion Coefficients and Structural Properties of Ketones in Supercritical CO2 at Infinite Dilution. J. Supercrit. Fluids. 2016;107:630–638. doi: 10.1016/J.SUPFLU.2015.07.025. doi: 10.1016/j.supflu.2015.07.025. DOI
Santibanez-Borda E. Govindan R. Elahi N. Korre A. Durucan S. Maximising the Dynamic CO2 Storage Capacity through the Optimisation of CO2 Injection and Brine Production Rates. Int. J. Greenhouse Gas Control. 2019;80:76–95. doi: 10.1016/j.ijggc.2018.11.012. doi: 10.1016/j.ijggc.2018.11.012. DOI
Suárez-Iglesias O. Medina I. Pizarro C. Bueno J. L. Diffusion Coefficients of 2-Fluoroanisole, 2-Bromoanisole, Allylbenzene and 1,3-Divinylbenzene at Infinite Dilution in Supercritical Carbon Dioxide. Fluid Phase Equilib. 2007;260(2):279–286. doi: 10.1016/J.FLUID.2007.07.039. doi: 10.1016/j.fluid.2007.07.039. DOI
Pizarro C. Suárez-Iglesias O. Medina I. Bueno J. L. Using Supercritical Fluid Chromatography to Determine Diffusion Coefficients of 1,2-Diethylbenzene, 1,4-Diethylbenzene, 5-Tert-Butyl-m-Xylene and Phenylacetylene in Supercritical Carbon Dioxide. J. Chromatogr. A. 2007;1167(2):202–209. doi: 10.1016/J.CHROMA.2007.08.010. doi: 10.1016/j.chroma.2007.08.010. PubMed DOI
Zhao L. Tao L. Lin S. Molecular Dynamics Characterizations of the Supercritical CO 2 –Mediated Hexane–Brine Interface. Ind. Eng. Chem. Res. 2015;54(9):2489–2496. doi: 10.1021/ie505048c. doi: 10.1021/ie505048c. DOI
Bueno J. L. Suarez J. J. Dizy J. Medina I. Infinite Dilution Diffusion Coefficients: Benzene Derivatives as Solutes in Supercritical Carbon Dioxide. J. Chem. Eng. Data. 1993;38(3):344–349. doi: 10.1021/je00011a002. doi: 10.1021/je00011a002. DOI
Xu B. Nagashima K. DeSimone J. M. Johnson C. S. Diffusion of Water in Liquid and Supercritical Carbon Dioxide: An NMR Study. J. Phys. Chem. A. 2003;107(1):1–3. doi: 10.1021/jp021943g. doi: 10.1021/jp021943g. DOI
Liu H. Ruckenstein E. A Predictive Equation for the Tracer Diffusion of Various Solutes in Gases, Supercritical Fluids, and Liquids. Ind. Eng. Chem. Res. 1997;36(12):5488–5500. doi: 10.1021/ie970331t. doi: 10.1021/ie970331t. DOI
Umezawa S. Nagashima A. Measurement of the Diffusion Coefficients of Acetone, Benzene, and Alkane in Supercritical CO2 by the Taylor Dispersion Method. J. Supercrit. Fluids. 1992;5(4):242–250. doi: 10.1016/0896-8446(92)90014-B. doi: 10.1016/0896-8446(92)90014-B. DOI
Lai C.-C. Tan C.-S. Measurement of Molecular Diffusion Coefficients in Supercritical Carbon Dioxide Using a Coated Capillary Column. Ind. Eng. Chem. Res. 1995;34(2):674–680. doi: 10.1021/ie00041a029. DOI
Iwai Y. Higashi H. Uchida H. Arai Y. Molecular Dynamics Simulation of Diffusion Coefficients of Naphthalene and 2-Naphthol in Supercritical Carbon Dioxide. Fluid Phase Equilib. 1997;127(1–2):251–261. doi: 10.1016/S0378-3812(96)03139-1. doi: 10.1016/S0378-3812(96)03139-1. DOI
Wang J. Zhong H. Feng H. Qiu W. Chen L. Molecular Dynamics Simulation of Diffusion Coefficients and Structural Properties of Some Alkylbenzenes in Supercritical Carbon Dioxide at Infinite Dilution. J. Chem. Phys. 2014;140(10):104501. doi: 10.1063/1.4867274. doi: 10.1063/1.4867274. PubMed DOI
Moultos O. A. Orozco G. A. Tsimpanogiannis I. N. Panagiotopoulos A. Z. Economou I. G. Atomistic Molecular Dynamics Simulations of H 2 O Diffusivity in Liquid and Supercritical CO 2. Mol. Phys. 2015;113(17–18):2805–2814. doi: 10.1080/00268976.2015.1023224. doi: 10.1080/00268976.2015.1023224. DOI
Loya A. Stair J. L. Jafri A. R. Yang K. Ren G. A Molecular Dynamic Investigation of Viscosity and Diffusion Coefficient of Nanoclusters in Hydrocarbon Fluids. Comput. Mater. Sci. 2015;99:242–246. doi: 10.1016/j.commatsci.2014.11.051. doi: 10.1016/j.commatsci.2014.11.051. DOI
Higashi H. Iwai Y. Arai Y. Calculation of Self-Diffusion and Tracer Diffusion Coefficients near the Critical Point of Carbon Dioxide Using Molecular Dynamics Simulation. Ind. Eng. Chem. Res. 2000;39(12):4567–4570. doi: 10.1021/ie000173x. doi: 10.1021/ie000173x. DOI
Lee H. Abarghani A. Liu B. Shokouhimehr M. Ostadhassan M. Molecular Weight Variations of Kerogen during Maturation with MALDI-TOF-MS. Fuel. 2020;269:117452. doi: 10.1016/J.FUEL.2020.117452. doi: 10.1016/j.fuel.2020.117452. DOI
Lee H. Oncel N. Liu B. Kukay A. Altincicek F. Varma R. S. Shokouhimehr M. Ostadhassan M. Structural Evolution of Organic Matter in Deep Shales by Spectroscopy (1H and 13C Nuclear Magnetic Resonance, X-Ray Photoelectron Spectroscopy, and Fourier Transform Infrared) Analysis. Energy Fuels. 2020;34(3):2807–2815. doi: 10.1021/acs.energyfuels.9b03851. doi: 10.1021/acs.energyfuels.9b03851. DOI
Lee H. Shakib A. Shokouhimeher F. Shokouhimehr M. Bubach B. Kong L. Ostadhassan M. Optimal Separation of CO2/CH4/Brine with Amorphous Kerogen: A Thermodynamics and Kinetics Study. J. Phys. Chem. C. 2019;123(34):20877–20883. doi: 10.1021/acs.jpcc.9b04432. doi: 10.1021/acs.jpcc.9b04432. DOI
Tsimpanogiannis I. N. Moultos O. A. Franco L. F. M. Spera M. B. de M. Erdős M. Economou I. G. Self-Diffusion Coefficient of Bulk and Confined Water: A Critical Review of Classical Molecular Simulation Studies. Mol. Simul. 2019;45(4–5):425–453. doi: 10.1080/08927022.2018.1511903. doi: 10.1080/08927022.2018.1511903. DOI
Mancera R. L. Hydrogen-Bonding Behaviour in the Hydrophobic Hydration of Simple Hydrocarbons in Water. J. Chem. Soc. Faraday. Trans. 1996;92(14):2547. doi: 10.1039/ft9969202547. doi: 10.1039/FT9969202547. DOI
Widom B. Bhimalapuram P. Koga K. The Hydrophobic Effect. Phys. Chem. Chem. Phys. 2003;5(15):3085. doi: 10.1039/b304038k. doi: 10.1039/B304038K. DOI
Meyer E. E. Rosenberg K. J. Israelachvili J. Recent Progress in Understanding Hydrophobic Interactions. Proc. Natl. Acad. Sci. U.S.A. 2006;103(43):15739–15746. doi: 10.1073/pnas.0606422103. doi: 10.1073/pnas.0606422103. PubMed DOI PMC
Harris J. G. Yung K. H. Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model. J. Phys. Chem. 1995;99(31):12021–12024. doi: 10.1021/j100031a034. doi: 10.1021/j100031a034. DOI
Abascal J. L. F. Vega C. A General Purpose Model for the Condensed Phases of Water: TIP4P/2005. J. Chem. Phys. 2005;123(23):234505. doi: 10.1063/1.2121687. doi: 10.1063/1.2121687. PubMed DOI
Jorgensen L. Maxwell W. Maxwell S. Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;118(45):11225–11236. doi: 10.1021/ja9621760. doi: 10.1021/ja9621760. DOI
Kaminski G. A. Friesner R. A. Tirado-Rives J. Jorgensen W. L. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B. 2001;105(28):6474–6487. doi: 10.1021/jp003919d. doi: 10.1021/jp003919d. DOI
Siu S. W. I. Pluhackova K. Böckmann R. A. Optimization of the OPLS-AA Force Field for Long Hydrocarbons. J. Chem. Theory Comput. 2012;8(4):1459–1470. doi: 10.1021/ct200908r. doi: 10.1021/ct200908r. PubMed DOI
Smith D. E. Dang L. X. Computer Simulations of NaCl Association in Polarizable Water. J. Chem. Phys. 1994;100(5):3757–3766. doi: 10.1063/1.466363. doi: 10.1063/1.466363. DOI
Fu C.-F. Tian S. X. A Comparative Study for Molecular Dynamics Simulations of Liquid Benzene. J. Chem. Theory Comput. 2011;7(7):2240–2252. doi: 10.1021/ct2002122. doi: 10.1021/ct2002122. PubMed DOI
Baker C. M. Grant G. H. Modeling Aromatic Liquids: Toluene, Phenol, and Pyridine. J. Chem. Theory Comput. 2007;3(2):530–548. doi: 10.1021/ct600218f. doi: 10.1021/ct600218f. PubMed DOI
Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995;117(1):1–19. doi: 10.1006/JCPH.1995.1039. doi: 10.1006/jcph.1995.1039. DOI
Span R. Wagner W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data. 1996;25(6):1509–1596. doi: 10.1063/1.555991. doi: 10.1063/1.555991. DOI
Suárez J. J. Medina I. Bueno J. L. Diffusion Coefficients in Supercritical Fluids: Available Data and Graphical Correlations. Fluid Phase Equilib. 1998;153(1):167–212. doi: 10.1016/S0378-3812(98)00403-8. doi: 10.1016/S0378-3812(98)00403-8. DOI
Vesovic V. Wakeham W. A. Olchowy G. A. Sengers J. V. Watson J. T. R. Millat J. The Transport Properties of Carbon Dioxide. J. Phys. Chem. Ref. Data. 1990;19(3):763–808. doi: 10.1063/1.555875. doi: 10.1063/1.555875. DOI
Wang J. Hou T. Application of Molecular Dynamics Simulations in Molecular Property Prediction II: Diffusion Coefficient. J. Comput. Chem. 2011;32(16):3505–3519. doi: 10.1002/jcc.21939. doi: 10.1002/jcc.21939. PubMed DOI PMC
Einstein A. Über Die von Der Molekularkinetischen Theorie Der Wärme Geforderte Bewegung von in Ruhenden Flüssigkeiten Suspendierten Teilchen. Ann. Phys. 1905;322(8):549–560. doi: 10.1002/andp.19053220806. doi: 10.1002/andp.19053220806. DOI
Sassiat P. R. Mourier P. Caude M. H. Rosset R. H. Measurement of Diffusion Coefficients in Supercritical Carbon Dioxide and Correlation with the Equation of Wilke and Chang. Anal. Chem. 1987;59(8):1164–1170. doi: 10.1021/ac00135a020. doi: 10.1021/ac00135a020. DOI
Suárez J. J. Bueno J. L. Medina I. Determination of Binary Diffusion Coefficients of Benzene and Derivatives in Supercritical Carbon Dioxide. Chem. Eng. Sci. 1993;48(13):2419–2427. doi: 10.1016/0009-2509(93)81063-2. doi: 10.1016/0009-2509(93)81063-2. DOI
Funazukuri T. Nishimoto N. Tracer Diffusion Coefficients of Benzene in Dense CO2 at 313.2 K and 8.5–30 MPa. Fluid Phase Equilib. 1996;125(1–2):235–243. doi: 10.1016/S0378-3812(96)03084-1. doi: 10.1016/S0378-3812(96)03084-1. DOI
Smolyanitsky A. Kazakov A. F. Bruno T. J. Huber M. L. Mass Diffusion of Organic Fluids: A Molecular Dynamics Perspective. NIST Tech. Note. 2013:1805. doi: 10.6028/NIST.TN.1805. DOI
Humphrey W. Dalke A. Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graphics. 1996;14(1):33–38. doi: 10.1016/0263-7855(96)00018-5. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Mountain R. D. Thirumalai D. Hydration for a Series of Hydrocarbons. Proc. Natl. Acad. Sci. U.S.A. 1998;95(15):8436–8440. doi: 10.1073/pnas.95.15.8436. doi: 10.1073/pnas.95.15.8436. PubMed DOI PMC
Mikheev Y. A. Guseva L. N. Davydov E. Y. Ershov Y. A. The Hydration of Hydrophobic Substances. Russ. J. Phys. Chem. A. 2007;81(12):1897–1913. doi: 10.1134/S0036024407120011. doi: 10.1134/S0036024407120011. DOI
Krekeler C. Delle Site L. Lone Pair versus Bonding Pair Electrons: The Mechanism of Electronic Polarization of Water in the Presence of Positive Ions. J. Chem. Phys. 2008;128(13):134515. doi: 10.1063/1.2873768. doi: 10.1063/1.2873768. PubMed DOI
Raschke T. M. Levitt M. Nonpolar Solutes Enhance Water Structure within Hydration Shells While Reducing Interactions between Them. Proc. Natl. Acad. Sci. U.S.A. 2005;102(19):6777–6782. doi: 10.1073/pnas.0500225102. doi: 10.1073/pnas.0500225102. PubMed DOI PMC
Chandler D. Interfaces and the Driving Force of Hydrophobic Assembly. Nature. 2005;437(7059):640–647. doi: 10.1038/nature04162. doi: 10.1038/nature04162. PubMed DOI
Kim J. Tian Y. Wu J. Thermodynamic and Structural Evidence for Reduced Hydrogen Bonding among Water Molecules near Small Hydrophobic Solutes. J. Phys. Chem. B. 2015;119(36):12108–12116. doi: 10.1021/acs.jpcb.5b05281. doi: 10.1021/acs.jpcb.5b05281. PubMed DOI
Andrić J. M. Janjić G. V. Ninković D. B. Zarić S. D. The Influence of Water Molecule Coordination to a Metal Ion on Water Hydrogen Bonds. Phys. Chem. Chem. Phys. 2012;14(31):10896. doi: 10.1039/c2cp41125c. doi: 10.1039/C2CP41125C. PubMed DOI
Kurtoglu B. Integrated Reservoir Characterization and Modeling in Support of Enhanced Oil Recovery for Bakken, Colorado School of Mines, 2013
Francisco O. A. Glor H. M. Khajehpour M. Salt Effects on Hydrophobic Solvation: Is the Observed Salt Specificity the Result of Excluded Volume Effects or Water Mediated Ion-Hydrophobe Association? ChemPhysChem. 2020;21(6):484–493. doi: 10.1002/cphc.201901000. doi: 10.1002/cphc.201901000. PubMed DOI