Synthesis and characterization of TiO2/Mg(OH)2 composites for catalytic degradation of CWA surrogates

. 2020 May 20 ; 10 (33) : 19542-19552. [epub] 20200521

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35515455

Surface catalyzed reactions can be a convenient way to deactivate toxic chemical warfare agents (CWAs) and remove them from the contaminated environment. In this study, pure titanium oxide, magnesium hydroxide, and their composites TiO2/Mg(OH2) were prepared by thermal decomposition and precipitation of the titanium peroxo-complex and/or magnesium nitrate in an aqueous solution. The as-prepared composites were examined by XRD, XPS, HRTEM, and nitrogen physisorption. Their decontamination ability was tested on CWA surrogates and determined by high-performance liquid chromatography (HPLC) and gas chromatography coupled with mass spectrometry (GC-MS). Dimethyl methyl phosphonate (DMMP) was used as a G simulant for the nerve agents sarin (GB) and soman (GD) while 2-chloroethyl ethyl sulfide (2-CEES) and 2-chloroethyl phenyl sulfide (2-CEPS) were used as surrogates of sulfur mustard (HD). The activity of the as-prepared composites was correlated with acid-base properties determined by potentiometric titrations and pyridine adsorption studied by in situ DRIFTS. The mixing of Ti and Mg led to an increase of the surface area and the amount of surface -OH groups (with an increasing amount of Ti) that caused improved degradation of DMMP.

Zobrazit více v PubMed

Kuča K., Pohanka M., in Molecular, Clinical and Environmental Toxicology: Volume 2: Clinical Toxicology, ed. A. Luch, Birkhäuser Basel, Basel, 2010, pp. 543–558

Ganesan K. Raza S. K. Vijayaraghavan R. J. Pharm. BioAllied Sci. 2010;2:166–178. doi: 10.4103/0975-7406.68498. PubMed DOI PMC

Wagner G. W. Ind. Eng. Chem. Res. 2011;50:12285–12287. doi: 10.1021/ie201297e. DOI

Singer B. C. Hodgson A. T. Destaillats H. Hotchi T. Revzan K. L. Sextro R. G. Environ. Sci. Technol. 2005;39:3203–3214. doi: 10.1021/es049144u. PubMed DOI

Verma A. K. Srivastava A. K. Singh B. Shah D. Shrivastava S. Shinde C. K. P. Chemosphere. 2013;90:2254–2260. doi: 10.1016/j.chemosphere.2012.10.011. PubMed DOI

Mahato T. H. Prasad G. K. Singh B. Batra K. Ganesan K. Microporous Mesoporous Mater. 2010;132:15–21. doi: 10.1016/j.micromeso.2009.05.035. DOI

Štengl V. Maříková M. Bakardjieva S. Šubrt J. Opluštil F. Olšanská M. J. Chem. Technol. Biotechnol. 2005;80:754–758. doi: 10.1002/jctb.1218. DOI

Štengl V. Bludská J. Opluštil F. Němec T. Mater. Res. Bull. 2011;46:2050–2056. doi: 10.1016/j.materresbull.2011.07.003. DOI

Šteng V. Maříková M. Bakardjieva S. Šubrt J. Opluštil F. Olšanská M. J. Chem. Technol. Biotechnol. 2005;80:754–758. doi: 10.1002/jctb.1218. DOI

Wagner G. W. Koper O. B. Lucas E. Decker S. Klabunde K. J. J. Phys. Chem. B. 2000;104:5118–5123. doi: 10.1021/jp000101j. DOI

Nazari B. Jaafari M. Dig. J. Nanomater. Bios. 2010;5:909–917.

Štengl V. Houšková V. Bakardjieva S. Murafa N. Maříková M. Opluštil F. Němec T. Mater. Charact. 2010;61:1080–1088. doi: 10.1016/j.matchar.2010.06.021. DOI

Šťastný M. Štengl V. Henych J. Tolasz J. Vomáčka P. Ederer J. J. Mater. Sci. 2016;51:2634–2642. doi: 10.1007/s10853-015-9577-9. DOI

Janoš P. Hladík T. Kormunda M. Ederer J. Šťastný M. Adv. Mater. Sci. Eng. 2014;2014:1–24. doi: 10.1155/2014/706041. DOI

Janos P. Kuran P. Kormunda M. Stengl V. Grygar T. M. Dosek M. Stastny M. Ederer J. Pilarova V. Vrtoch L. J. Rare Earths. 2014;32:360–370. doi: 10.1016/S1002-0721(14)60079-X. DOI

Sharma N. Kakkar R. J. Comput. Sci. 2015;10:225–236. doi: 10.1016/j.jocs.2014.12.003. DOI

Wagner G. W. Bartram P. W. Koper O. Klabunde K. J. J. Phys. Chem. B

Bigiani L. Zappa D. Barreca D. Gasparotto A. Sada C. Tabacchi G. Fois E. Comini E. MacCato C. ACS Appl. Mater. Interfaces. 2019;11(26):23692–23700. doi: 10.1021/acsami.9b04875. PubMed DOI

Soliz J. R., Gordon W. O., Balboa A., Mahle J., Hauser A. J., Bussmann K. M., Osofsky M. S. and Karwacki C. J., in Abstracts of Papers, 250th ACS National Meeting & Exposition, Boston, MA, United States, August 16-20, 2015

Prasad G. K. Ramacharyulu P. V. R. K. Praveen Kumar J. Ganesan K. Singh B. J. Sci. Ind. Res. 2012;71:205–209.

Sharma N. Kakkar R. Adv. Mater. 2013;4:508–521.

Ewing K. J. Lerner B. Appl. Spectrosc. 2001;55:407–411. doi: 10.1366/0003702011952154. DOI

Maddah B. Chalabi H. Int. J. Nanosci. Nanotechnol. 2012;8:157–164.

Narske R. M., Klabunde K. J. and Fultz S. S., Abstr. Pap. 221st ACS Natl. Meet, San Diego, CA, United States, April 1-5, 2001, IEC-318

Štengl V. Bakardjieva S. Maříková M. Bezdička P. Šubrt J. Mater. Lett. 2003;57:3998–4003. doi: 10.1016/S0167-577X(03)00254-4. DOI

Štengl V. Grygar T. M. Opluštil F. Němec T. J. Hazard. Mater. 2011;192:1491–1504. doi: 10.1016/j.jhazmat.2011.06.069. PubMed DOI

Henych J. Janoš P. Kormunda M. Tolasz J. Štengl V. Arabian J. Chem. 2016;11:4258–4269.

Bukatov G. D. Maslov D. K. Sergeev S. A. Matsko M. A. Appl. Catal., A. 2019;577:69–75. doi: 10.1016/j.apcata.2019.03.010. DOI

Liu Y. Zou J. Zeng X. Ding W. RSC Adv. 2014;4:42764–42771. doi: 10.1039/C4RA05382F. DOI

Jeon H. Min Y. J. Ahn S. H. Hong S.-M. Shin J.-S. Kim J. H. Lee K. B. Colloids Surf., A. 2012;414:75–81. doi: 10.1016/j.colsurfa.2012.08.009. DOI

Ashok C. H. Rao V. K. Shilpa Chakra C. H. J. Nanomed. Nanotechnol. 2015;06:2–6.

Wu P.-Y. Jiang Y.-P. Zhang Q.-Y. Jia Y. Peng D.-Y. Xu W. New J. Chem. 2016;40:2878–2885. doi: 10.1039/C5NJ02358K. DOI

Hua M. Zhang S. Pan B. Zhang W. Lv L. Zhang Q. J. Hazard. Mater. 2012;211–212:317–331. doi: 10.1016/j.jhazmat.2011.10.016. PubMed DOI

Dhanya A. and Aparna K., in Recent Advances in Chemical Engineering: Select Proceedings of ICACE 2015, ed. I. Regupathi, V. K. Shetty and M. Thanabalan, Springer Singapore, Singapore, 2016, pp. 219–225

Bandara J. Kuruppu S. S. Pradeep U. W. Colloids Surf., A. 2006;276:197–202. doi: 10.1016/j.colsurfa.2005.10.059. DOI

Jung H. S. Lee J.-K. Nastasi M. Lee S.-W. Kim J.-Y. Park J.-S. Hong K. S. Shin H. Langmuir. 2005;21:10332–10335. doi: 10.1021/la051807d. PubMed DOI

Chou C. S. Yang R. Y. Yeh C. K. Lin Y. J. Powder Technol. 2009;194:95–105. doi: 10.1016/j.powtec.2009.03.039. DOI

Patterson a. L. Phys. Rev. 1939;56:978–982. doi: 10.1103/PhysRev.56.978. DOI

Naderi M., in Progress in Filtration and Separation, 2014, pp. 585–608

Henych J. Janoš P. Kormunda M. Tolasz J. Štengl V. Arabian J. Chem. 2016;11:4258–4269.

Šťastný M. Tolasz J. Štengl V. Henych J. Žižka D. Appl. Surf. Sci. 2017;412:19–28. doi: 10.1016/j.apsusc.2017.03.228. DOI

Ardizzone S. Bianchi C. L. Fadoni M. Vercelli B. Appl. Surf. Sci. 1997;119:253–259. doi: 10.1016/S0169-4332(97)00180-3. DOI

Haycock D. E. Kasrai M. Nicholls C. J. Urch D. S. J. Chem. Soc., Dalton Trans. 1978:1791–1796. doi: 10.1039/DT9780001791. DOI

Giannini M. Ballaran T. B. Langenhorst F. Am. Mineral. 2014;99:2060–2067. doi: 10.2138/am-2014-4592. DOI

Feliu Jr S. Galván J. C. Pardo A. Merino M. C. Arrabal R. Open Corros. J. 2010;3:80–91. doi: 10.2174/1876503301003010080. DOI

Henych J. Stengl V. Mattsson A. Osterlund L. Photochem. Photobiol. 2015;91:48–58. doi: 10.1111/php.12374. PubMed DOI

Šťastný M. Tolasz J. Štengl V. Henych J. Žižka D. Appl. Surf. Sci. 2017;412:19–28. doi: 10.1016/j.apsusc.2017.03.228. DOI

Forni L. Catal. Rev. 1974;8:65–115. doi: 10.1080/01614947408071857. DOI

Preočanin T. Kallay N. Croat. Chem. Acta

Contescu C. Jagiełło J. Schwarz J. A. Langmuir. 1993;9:1754–1765. doi: 10.1021/la00031a024. DOI

Khan M. N. Sarwar A. Surf. Rev. Lett. 2007;14:461–469. doi: 10.1142/S0218625X07009517. DOI

Yang S. Shao D. Wang X. Nagatsu M. RSC Adv. 2014;4:4856–4863. doi: 10.1039/C3RA46701E. DOI

Kawakami H. Yoshida S. J. Chem. Soc., Faraday Trans. 2. 1984;80:921–932. doi: 10.1039/F29848000921. DOI

Reymond J. P. and Kolenda F., in Powder Technology, 1999

Bourikas K. Kordulis C. Lycourghiotis A. Environ. Sci. Technol. 2005;39:4100–4108. doi: 10.1021/es048139n. PubMed DOI

O’Shea K. E. Garcia I. Aguilar M. Res. Chem. Intermed. 1997;23:325–339. doi: 10.1163/156856797X00556. DOI

Bandara J. Hadapangoda C. C. Jayasekera W. G. Appl. Catal., B. 2004;50:83–88. doi: 10.1016/j.apcatb.2003.12.021. DOI

Penkova A. Bobadilla L. F. Romero-Sarria F. Centeno M. A. Odriozola J. A. Appl. Surf. Sci. 2014;317:241–251. doi: 10.1016/j.apsusc.2014.08.093. DOI

Selli E. Forni L. Microporous Mesoporous Mater. 1999;31:129–140. doi: 10.1016/S1387-1811(99)00063-3. DOI

Rusu C. N. Yates J. T. J. Phys. Chem. B. 2000;104:12292–12298. doi: 10.1021/jp002560q. DOI

Fryxell G. E. and Cao G., Environmental applications of nanomaterials: Synthesis, sorbents and sensors, 2nd edn, 2012

Mitchell M. B. Sheinker V. N. Cox W. W. Gatimu E. N. Tesfamichael A. B. J. Phys. Chem. B. 2004;108:1634–1645. doi: 10.1021/jp035590c. DOI

Knagge K. Johnson M. Grassian V. H. Larsen S. C. Langmuir. 2006;22:11077–11084. doi: 10.1021/la061341e. PubMed DOI

Segal S. R. Cao L. Suib S. L. Tang X. Satyapal S. J. Catal. 2001;198:66–76. doi: 10.1006/jcat.2000.3126. DOI

Head A. R. Tsyshevsky R. Trotochaud L. Yu Y. Kyhl L. Karslloǧlu O. Kuklja M. M. Bluhm H. J. Phys. Chem. C. 2016;120:29077–29088. doi: 10.1021/acs.jpcc.6b07340. PubMed DOI

Hung W. C. Wang J. C. Wu K. H. Appl. Surf. Sci. 2018;444:330–335. doi: 10.1016/j.apsusc.2018.03.082. DOI

Martin M. E. Narske R. M. Klabunde K. J. Microporous Mesoporous Mater. 2005;83:47–50. doi: 10.1016/j.micromeso.2005.04.003. DOI

Stout S. C. Larsen S. C. Grassian V. H. Microporous Mesoporous Mater. 2007;100:77–86. doi: 10.1016/j.micromeso.2006.10.010. DOI

Martyanov I. N. Klabunde K. J. Environ. Sci. Technol. 2003; 37:3448–3453. doi: 10.1021/es0209767. PubMed DOI

Wagner G. W. Bartram P. W. Langmuir. 1999;15:8113–8118. doi: 10.1021/la990716b. DOI

Verma M. Chandra R. Gupta V. K. J. Environ. Chem. Eng. 2016;4:219–229. doi: 10.1016/j.jece.2015.11.016. DOI

Verma M. Chandra R. Gupta V. K. J. Colloid Interface Sci. 2015;453:60–68. doi: 10.1016/j.jcis.2015.04.039. PubMed DOI

Han S.-T. Xi H.-L. Fu X.-Z. Wang X.-X. Ding Z.-X. Lin Z.-C. Su W.-Y. Wuli Huaxue Xuebao. 2004;20:296–301.

Jang B. W. L. Spivey J. J. Catal. Today. 2000;55:3–10. doi: 10.1016/S0920-5861(99)00221-7. DOI

Mitchell J. K. Arcibar-Orozco J. A. Bandosz T. J. Appl. Surf. Sci. 2016;390:735–743. doi: 10.1016/j.apsusc.2016.08.118. DOI

Giannakoudakis D. A. Florent M. Wallace R. Secor J. Karwacki C. Bandosz T. J. Appl. Catal., B. 2018;226:429–440. doi: 10.1016/j.apcatb.2017.12.068. DOI

Prasad G. K. J. Sci. Ind. Res. 2010;69:835–840.

Wagner G. W. Yang Y.-C. Ind. Eng. Chem. Res. 2002;41:1925–1928. doi: 10.1021/ie010732f. DOI

Climent M. J. Corma A. Iborra S. Velty A. J. Mol. Catal. A: Chem. 2002;182–183:327–342. doi: 10.1016/S1381-1169(01)00501-5. DOI

Sadeghi M. Yekta S. Ghaedi H. Int. Nano Lett. 2016;6:161–171. doi: 10.1007/s40089-016-0183-x. DOI

Kiani A. Dastafkan K. J. Colloid Interface Sci. 2016;478:271–279. doi: 10.1016/j.jcis.2016.06.025. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace