Synthesis and characterization of TiO2/Mg(OH)2 composites for catalytic degradation of CWA surrogates
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35515455
PubMed Central
PMC9054062
DOI
10.1039/d0ra00944j
PII: d0ra00944j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Surface catalyzed reactions can be a convenient way to deactivate toxic chemical warfare agents (CWAs) and remove them from the contaminated environment. In this study, pure titanium oxide, magnesium hydroxide, and their composites TiO2/Mg(OH2) were prepared by thermal decomposition and precipitation of the titanium peroxo-complex and/or magnesium nitrate in an aqueous solution. The as-prepared composites were examined by XRD, XPS, HRTEM, and nitrogen physisorption. Their decontamination ability was tested on CWA surrogates and determined by high-performance liquid chromatography (HPLC) and gas chromatography coupled with mass spectrometry (GC-MS). Dimethyl methyl phosphonate (DMMP) was used as a G simulant for the nerve agents sarin (GB) and soman (GD) while 2-chloroethyl ethyl sulfide (2-CEES) and 2-chloroethyl phenyl sulfide (2-CEPS) were used as surrogates of sulfur mustard (HD). The activity of the as-prepared composites was correlated with acid-base properties determined by potentiometric titrations and pyridine adsorption studied by in situ DRIFTS. The mixing of Ti and Mg led to an increase of the surface area and the amount of surface -OH groups (with an increasing amount of Ti) that caused improved degradation of DMMP.
Zobrazit více v PubMed
Kuča K., Pohanka M., in Molecular, Clinical and Environmental Toxicology: Volume 2: Clinical Toxicology, ed. A. Luch, Birkhäuser Basel, Basel, 2010, pp. 543–558
Ganesan K. Raza S. K. Vijayaraghavan R. J. Pharm. BioAllied Sci. 2010;2:166–178. doi: 10.4103/0975-7406.68498. PubMed DOI PMC
Wagner G. W. Ind. Eng. Chem. Res. 2011;50:12285–12287. doi: 10.1021/ie201297e. DOI
Singer B. C. Hodgson A. T. Destaillats H. Hotchi T. Revzan K. L. Sextro R. G. Environ. Sci. Technol. 2005;39:3203–3214. doi: 10.1021/es049144u. PubMed DOI
Verma A. K. Srivastava A. K. Singh B. Shah D. Shrivastava S. Shinde C. K. P. Chemosphere. 2013;90:2254–2260. doi: 10.1016/j.chemosphere.2012.10.011. PubMed DOI
Mahato T. H. Prasad G. K. Singh B. Batra K. Ganesan K. Microporous Mesoporous Mater. 2010;132:15–21. doi: 10.1016/j.micromeso.2009.05.035. DOI
Štengl V. Maříková M. Bakardjieva S. Šubrt J. Opluštil F. Olšanská M. J. Chem. Technol. Biotechnol. 2005;80:754–758. doi: 10.1002/jctb.1218. DOI
Štengl V. Bludská J. Opluštil F. Němec T. Mater. Res. Bull. 2011;46:2050–2056. doi: 10.1016/j.materresbull.2011.07.003. DOI
Šteng V. Maříková M. Bakardjieva S. Šubrt J. Opluštil F. Olšanská M. J. Chem. Technol. Biotechnol. 2005;80:754–758. doi: 10.1002/jctb.1218. DOI
Wagner G. W. Koper O. B. Lucas E. Decker S. Klabunde K. J. J. Phys. Chem. B. 2000;104:5118–5123. doi: 10.1021/jp000101j. DOI
Nazari B. Jaafari M. Dig. J. Nanomater. Bios. 2010;5:909–917.
Štengl V. Houšková V. Bakardjieva S. Murafa N. Maříková M. Opluštil F. Němec T. Mater. Charact. 2010;61:1080–1088. doi: 10.1016/j.matchar.2010.06.021. DOI
Šťastný M. Štengl V. Henych J. Tolasz J. Vomáčka P. Ederer J. J. Mater. Sci. 2016;51:2634–2642. doi: 10.1007/s10853-015-9577-9. DOI
Janoš P. Hladík T. Kormunda M. Ederer J. Šťastný M. Adv. Mater. Sci. Eng. 2014;2014:1–24. doi: 10.1155/2014/706041. DOI
Janos P. Kuran P. Kormunda M. Stengl V. Grygar T. M. Dosek M. Stastny M. Ederer J. Pilarova V. Vrtoch L. J. Rare Earths. 2014;32:360–370. doi: 10.1016/S1002-0721(14)60079-X. DOI
Sharma N. Kakkar R. J. Comput. Sci. 2015;10:225–236. doi: 10.1016/j.jocs.2014.12.003. DOI
Wagner G. W. Bartram P. W. Koper O. Klabunde K. J. J. Phys. Chem. B
Bigiani L. Zappa D. Barreca D. Gasparotto A. Sada C. Tabacchi G. Fois E. Comini E. MacCato C. ACS Appl. Mater. Interfaces. 2019;11(26):23692–23700. doi: 10.1021/acsami.9b04875. PubMed DOI
Soliz J. R., Gordon W. O., Balboa A., Mahle J., Hauser A. J., Bussmann K. M., Osofsky M. S. and Karwacki C. J., in Abstracts of Papers, 250th ACS National Meeting & Exposition, Boston, MA, United States, August 16-20, 2015
Prasad G. K. Ramacharyulu P. V. R. K. Praveen Kumar J. Ganesan K. Singh B. J. Sci. Ind. Res. 2012;71:205–209.
Sharma N. Kakkar R. Adv. Mater. 2013;4:508–521.
Ewing K. J. Lerner B. Appl. Spectrosc. 2001;55:407–411. doi: 10.1366/0003702011952154. DOI
Maddah B. Chalabi H. Int. J. Nanosci. Nanotechnol. 2012;8:157–164.
Narske R. M., Klabunde K. J. and Fultz S. S., Abstr. Pap. 221st ACS Natl. Meet, San Diego, CA, United States, April 1-5, 2001, IEC-318
Štengl V. Bakardjieva S. Maříková M. Bezdička P. Šubrt J. Mater. Lett. 2003;57:3998–4003. doi: 10.1016/S0167-577X(03)00254-4. DOI
Štengl V. Grygar T. M. Opluštil F. Němec T. J. Hazard. Mater. 2011;192:1491–1504. doi: 10.1016/j.jhazmat.2011.06.069. PubMed DOI
Henych J. Janoš P. Kormunda M. Tolasz J. Štengl V. Arabian J. Chem. 2016;11:4258–4269.
Bukatov G. D. Maslov D. K. Sergeev S. A. Matsko M. A. Appl. Catal., A. 2019;577:69–75. doi: 10.1016/j.apcata.2019.03.010. DOI
Liu Y. Zou J. Zeng X. Ding W. RSC Adv. 2014;4:42764–42771. doi: 10.1039/C4RA05382F. DOI
Jeon H. Min Y. J. Ahn S. H. Hong S.-M. Shin J.-S. Kim J. H. Lee K. B. Colloids Surf., A. 2012;414:75–81. doi: 10.1016/j.colsurfa.2012.08.009. DOI
Ashok C. H. Rao V. K. Shilpa Chakra C. H. J. Nanomed. Nanotechnol. 2015;06:2–6.
Wu P.-Y. Jiang Y.-P. Zhang Q.-Y. Jia Y. Peng D.-Y. Xu W. New J. Chem. 2016;40:2878–2885. doi: 10.1039/C5NJ02358K. DOI
Hua M. Zhang S. Pan B. Zhang W. Lv L. Zhang Q. J. Hazard. Mater. 2012;211–212:317–331. doi: 10.1016/j.jhazmat.2011.10.016. PubMed DOI
Dhanya A. and Aparna K., in Recent Advances in Chemical Engineering: Select Proceedings of ICACE 2015, ed. I. Regupathi, V. K. Shetty and M. Thanabalan, Springer Singapore, Singapore, 2016, pp. 219–225
Bandara J. Kuruppu S. S. Pradeep U. W. Colloids Surf., A. 2006;276:197–202. doi: 10.1016/j.colsurfa.2005.10.059. DOI
Jung H. S. Lee J.-K. Nastasi M. Lee S.-W. Kim J.-Y. Park J.-S. Hong K. S. Shin H. Langmuir. 2005;21:10332–10335. doi: 10.1021/la051807d. PubMed DOI
Chou C. S. Yang R. Y. Yeh C. K. Lin Y. J. Powder Technol. 2009;194:95–105. doi: 10.1016/j.powtec.2009.03.039. DOI
Patterson a. L. Phys. Rev. 1939;56:978–982. doi: 10.1103/PhysRev.56.978. DOI
Naderi M., in Progress in Filtration and Separation, 2014, pp. 585–608
Henych J. Janoš P. Kormunda M. Tolasz J. Štengl V. Arabian J. Chem. 2016;11:4258–4269.
Šťastný M. Tolasz J. Štengl V. Henych J. Žižka D. Appl. Surf. Sci. 2017;412:19–28. doi: 10.1016/j.apsusc.2017.03.228. DOI
Ardizzone S. Bianchi C. L. Fadoni M. Vercelli B. Appl. Surf. Sci. 1997;119:253–259. doi: 10.1016/S0169-4332(97)00180-3. DOI
Haycock D. E. Kasrai M. Nicholls C. J. Urch D. S. J. Chem. Soc., Dalton Trans. 1978:1791–1796. doi: 10.1039/DT9780001791. DOI
Giannini M. Ballaran T. B. Langenhorst F. Am. Mineral. 2014;99:2060–2067. doi: 10.2138/am-2014-4592. DOI
Feliu Jr S. Galván J. C. Pardo A. Merino M. C. Arrabal R. Open Corros. J. 2010;3:80–91. doi: 10.2174/1876503301003010080. DOI
Henych J. Stengl V. Mattsson A. Osterlund L. Photochem. Photobiol. 2015;91:48–58. doi: 10.1111/php.12374. PubMed DOI
Šťastný M. Tolasz J. Štengl V. Henych J. Žižka D. Appl. Surf. Sci. 2017;412:19–28. doi: 10.1016/j.apsusc.2017.03.228. DOI
Forni L. Catal. Rev. 1974;8:65–115. doi: 10.1080/01614947408071857. DOI
Preočanin T. Kallay N. Croat. Chem. Acta
Contescu C. Jagiełło J. Schwarz J. A. Langmuir. 1993;9:1754–1765. doi: 10.1021/la00031a024. DOI
Khan M. N. Sarwar A. Surf. Rev. Lett. 2007;14:461–469. doi: 10.1142/S0218625X07009517. DOI
Yang S. Shao D. Wang X. Nagatsu M. RSC Adv. 2014;4:4856–4863. doi: 10.1039/C3RA46701E. DOI
Kawakami H. Yoshida S. J. Chem. Soc., Faraday Trans. 2. 1984;80:921–932. doi: 10.1039/F29848000921. DOI
Reymond J. P. and Kolenda F., in Powder Technology, 1999
Bourikas K. Kordulis C. Lycourghiotis A. Environ. Sci. Technol. 2005;39:4100–4108. doi: 10.1021/es048139n. PubMed DOI
O’Shea K. E. Garcia I. Aguilar M. Res. Chem. Intermed. 1997;23:325–339. doi: 10.1163/156856797X00556. DOI
Bandara J. Hadapangoda C. C. Jayasekera W. G. Appl. Catal., B. 2004;50:83–88. doi: 10.1016/j.apcatb.2003.12.021. DOI
Penkova A. Bobadilla L. F. Romero-Sarria F. Centeno M. A. Odriozola J. A. Appl. Surf. Sci. 2014;317:241–251. doi: 10.1016/j.apsusc.2014.08.093. DOI
Selli E. Forni L. Microporous Mesoporous Mater. 1999;31:129–140. doi: 10.1016/S1387-1811(99)00063-3. DOI
Rusu C. N. Yates J. T. J. Phys. Chem. B. 2000;104:12292–12298. doi: 10.1021/jp002560q. DOI
Fryxell G. E. and Cao G., Environmental applications of nanomaterials: Synthesis, sorbents and sensors, 2nd edn, 2012
Mitchell M. B. Sheinker V. N. Cox W. W. Gatimu E. N. Tesfamichael A. B. J. Phys. Chem. B. 2004;108:1634–1645. doi: 10.1021/jp035590c. DOI
Knagge K. Johnson M. Grassian V. H. Larsen S. C. Langmuir. 2006;22:11077–11084. doi: 10.1021/la061341e. PubMed DOI
Segal S. R. Cao L. Suib S. L. Tang X. Satyapal S. J. Catal. 2001;198:66–76. doi: 10.1006/jcat.2000.3126. DOI
Head A. R. Tsyshevsky R. Trotochaud L. Yu Y. Kyhl L. Karslloǧlu O. Kuklja M. M. Bluhm H. J. Phys. Chem. C. 2016;120:29077–29088. doi: 10.1021/acs.jpcc.6b07340. PubMed DOI
Hung W. C. Wang J. C. Wu K. H. Appl. Surf. Sci. 2018;444:330–335. doi: 10.1016/j.apsusc.2018.03.082. DOI
Martin M. E. Narske R. M. Klabunde K. J. Microporous Mesoporous Mater. 2005;83:47–50. doi: 10.1016/j.micromeso.2005.04.003. DOI
Stout S. C. Larsen S. C. Grassian V. H. Microporous Mesoporous Mater. 2007;100:77–86. doi: 10.1016/j.micromeso.2006.10.010. DOI
Martyanov I. N. Klabunde K. J. Environ. Sci. Technol. 2003; 37:3448–3453. doi: 10.1021/es0209767. PubMed DOI
Wagner G. W. Bartram P. W. Langmuir. 1999;15:8113–8118. doi: 10.1021/la990716b. DOI
Verma M. Chandra R. Gupta V. K. J. Environ. Chem. Eng. 2016;4:219–229. doi: 10.1016/j.jece.2015.11.016. DOI
Verma M. Chandra R. Gupta V. K. J. Colloid Interface Sci. 2015;453:60–68. doi: 10.1016/j.jcis.2015.04.039. PubMed DOI
Han S.-T. Xi H.-L. Fu X.-Z. Wang X.-X. Ding Z.-X. Lin Z.-C. Su W.-Y. Wuli Huaxue Xuebao. 2004;20:296–301.
Jang B. W. L. Spivey J. J. Catal. Today. 2000;55:3–10. doi: 10.1016/S0920-5861(99)00221-7. DOI
Mitchell J. K. Arcibar-Orozco J. A. Bandosz T. J. Appl. Surf. Sci. 2016;390:735–743. doi: 10.1016/j.apsusc.2016.08.118. DOI
Giannakoudakis D. A. Florent M. Wallace R. Secor J. Karwacki C. Bandosz T. J. Appl. Catal., B. 2018;226:429–440. doi: 10.1016/j.apcatb.2017.12.068. DOI
Prasad G. K. J. Sci. Ind. Res. 2010;69:835–840.
Wagner G. W. Yang Y.-C. Ind. Eng. Chem. Res. 2002;41:1925–1928. doi: 10.1021/ie010732f. DOI
Climent M. J. Corma A. Iborra S. Velty A. J. Mol. Catal. A: Chem. 2002;182–183:327–342. doi: 10.1016/S1381-1169(01)00501-5. DOI
Sadeghi M. Yekta S. Ghaedi H. Int. Nano Lett. 2016;6:161–171. doi: 10.1007/s40089-016-0183-x. DOI
Kiani A. Dastafkan K. J. Colloid Interface Sci. 2016;478:271–279. doi: 10.1016/j.jcis.2016.06.025. PubMed DOI