Development of core-sheath structured smart nanofibers by coaxial electrospinning for thermo-regulated textiles

. 2019 Jul 11 ; 9 (38) : 21844-21851. [epub] 20190715

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35518892

It is of great significance to develop phase change materials (PCMs) with high performance. The reported PCMs usually possess serious defects like low heat capacity and poor thermal stability. Here, core-sheath structured nanofibers with polyvinyl butyral (PVB) as the sheath and octadecane as the core were fabricated by melt coaxial electrospinning. Pure octadecane without any solvents was used as the core solution, thus, the optimal sample possessed very high latent heat up to 118 J g-1. We studied the influence of core feed rate and PVB solution concentration on the encapsulation rate, and the highest encapsulation rate was found when the PVB concentration was 10% and core feed rate was 0.08 mL h-1. And hexagonal cesium tungsten bronze (Cs x WO3, a near infrared absorber) was introduced into the optimal sample partly to improve its conversion efficiency of solar to thermal energy, and partly absorb uncomfortable infrared light; the composite phase change material also possessed high latent heat up to 96.9 J g-1. In addition, 100 thermal cycle test proved that with a minor latent heat decrease, the prepared core-sheath structured smart nanofibers had good thermal stability, which overcomes the leakage problem of pure octadecane. Additionally, the 9 wt% Cs x WO3-loaded sample had an increase in tensile strength and elongation compared with the sample without Cs x WO3, indicating the good compatibility between Cs x WO3 and PVB.

Zobrazit více v PubMed

Stoppa M. Chiolerio A. Sensors. 2014;14:11957–11992. doi: 10.3390/s140711957. PubMed DOI PMC

Hu J. Meng H. Li G. Ibekwe S. I. Smart Mater. Struct. 2012;21:053001. doi: 10.1088/0964-1726/21/5/053001. DOI

Pause B. J. Ind. Text. 2016;33:93–99. doi: 10.1177/152808303038859. DOI

Jiang H. Y. Kelch S. Lendlein A. Adv. Mater. 2006;18:1471–1475. doi: 10.1002/adma.200502266. DOI

Hu J., Liu W. and Liu B., US Pat., US007780979B2, 2010

Tamura H. Tsuruta Y. Tokura S. Mater. Sci. Eng. C. 2002;20:143–147. doi: 10.1016/S0928-4931(02)00024-3. DOI

Pasche S. Angeloni S. Ischer R. Liley M. Luprano J. Voirin G. Adv. Sci. Technol. 2008;57:80–87.

Hu J., Zeng F. and Li P., US Pat., US007968083B2, 2011

Jost K. Dion G. Gogotsi Y. J. Mater. Chem. A. 2014;2:10776. doi: 10.1039/C4TA00203B. DOI

Rezaei B. Ghani M. Askari M. Shoushtari A. M. Malek R. M. A. Adv. Polym. Technol. 2016;35:21534. doi: 10.1002/adv.21534. DOI

Song S. K. Zhao T. T. Qiu F. Zhu W. T. Chen T. R. Guo Y. Zhang Y. Wang Y. Q. Feng R. Liu Y. Xiong C. X. Zhou J. Dong L. J. Energy. 2019;172:1144–1150. doi: 10.1016/j.energy.2019.02.052. DOI

Song S. K. Zhao T. T. Zhu W. T. Qiu F. Wang Y. Q. Dong L. J. ACS Appl. Mater. Interfaces. 2019;11:20828–20837. doi: 10.1021/acsami.9b04523. PubMed DOI

Kenisarin M. Mahkamov K. Renewable Sustainable Energy Rev. 2007;11:1913–1965. doi: 10.1016/j.rser.2006.05.005. DOI

Li G. Hong G. Dong D. Song W. Zhang X. Adv. Mater. 2018;30:1801754. doi: 10.1002/adma.201801754. PubMed DOI

Chalco-Sandoval W. Fabra M. J. López-Rubio A. Lagaron J. M. Eur. Polym. J. 2015;72:23–33. doi: 10.1016/j.eurpolymj.2015.08.033. DOI

Pandey A. K. Hossain M. S. Tyagi V. V. Abd Rahim N. Selvaraj J. A. L. Sari A. Renewable Sustainable Energy Rev. 2018;82:281–323. doi: 10.1016/j.rser.2017.09.043. DOI

Song S. K. Qiu F. Zhu W. T. Guo Y. Zhang Y. Ju Y. Y. Feng R. Liu Y. Chen Z. Zhou J. Xiong C. X. Dong L. J. Sol. Energy Mater. Sol. Cells. 2019;193:237–245. doi: 10.1016/j.solmat.2019.01.023. DOI

Zalba B. Marín J. M. Cabeza L. F. Mehling H. Appl. Therm. Eng. 2003;23:251–283. doi: 10.1016/S1359-4311(02)00192-8. DOI

Mohamed S. A. Al-Sulaiman F. A. Ibrahim N. I. Zahir M. H. Al-Ahmed A. Saidur R. Yılbaş B. S. Sahin A. Z. Renewable Sustainable Energy Rev. 2017;70:1072–1089. doi: 10.1016/j.rser.2016.12.012. DOI

Chen C. Wang L. Huang Y. Polymer. 2007;48:5202–5207. doi: 10.1016/j.polymer.2007.06.069. DOI

Demirbas M. F. Energy Sources, Part B. 2006;1:85–95. doi: 10.1080/009083190881481. DOI

Lu Y. Xiao X. Zhan Y. Huan C. Qi S. Cheng H. Xu G. ACS Appl. Mater. Interfaces. 2018;10:12759–12767. doi: 10.1021/acsami.8b02057. PubMed DOI

Ke H. Wei Q. Thermochim. Acta. 2019;671:10–16. doi: 10.1016/j.tca.2018.11.002. DOI

Babapoor A. Karimi G. Golestaneh S. I. Mezjin M. A. Appl. Therm. Eng. 2017;118:398–407. doi: 10.1016/j.applthermaleng.2017.02.119. DOI

Cabeza L. F. Castellón C. Nogués M. Medrano M. Leppers R. Zubillaga O. Energy Build. 2007;39:113–119. doi: 10.1016/j.enbuild.2006.03.030. DOI

Zhang N. Yuan Y. Cao X. Du Y. Zhang Z. Gui Y. Adv. Eng. Mater. 2018;20:1700753. doi: 10.1002/adem.201700753. DOI

Chen C. Wang L. Huang Y. Appl. Energy. 2011;88:3133–3139. doi: 10.1016/j.apenergy.2011.02.026. DOI

Cherif C. Tran N. H. A. Kirsten M. Bruenig H. Vogel R. eXPRESS Polym. Lett. 2018;12:203–214. doi: 10.3144/expresspolymlett.2018.19. DOI

Wan Y. Zhou P. Liu Y. Chen H. RSC Adv. 2016;6:21204. doi: 10.1039/C6RA00281A. DOI

Do C. V. Nguyen T. T. T. Park J. S. Korean J. Chem. Eng. 2013;30:1403–1409. doi: 10.1007/s11814-013-0046-3. DOI

Chalco-Sandoval W. Fabra M. J. López-Rubio A. Lagaron J. M. J. Appl. Polym. Sci. 2016;133:43903. doi: 10.1002/app.43903. DOI

Lu Y. Xiao X. D. Fu J. Huan C. M. Qi S. Zhan Y. J. Zhu Y. Q. Xu G. Chem. Eng. J. 2019;355:532–539. doi: 10.1016/j.cej.2018.08.189. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...