Development of core-sheath structured smart nanofibers by coaxial electrospinning for thermo-regulated textiles
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35518892
PubMed Central
PMC9066422
DOI
10.1039/c9ra03795k
PII: c9ra03795k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
It is of great significance to develop phase change materials (PCMs) with high performance. The reported PCMs usually possess serious defects like low heat capacity and poor thermal stability. Here, core-sheath structured nanofibers with polyvinyl butyral (PVB) as the sheath and octadecane as the core were fabricated by melt coaxial electrospinning. Pure octadecane without any solvents was used as the core solution, thus, the optimal sample possessed very high latent heat up to 118 J g-1. We studied the influence of core feed rate and PVB solution concentration on the encapsulation rate, and the highest encapsulation rate was found when the PVB concentration was 10% and core feed rate was 0.08 mL h-1. And hexagonal cesium tungsten bronze (Cs x WO3, a near infrared absorber) was introduced into the optimal sample partly to improve its conversion efficiency of solar to thermal energy, and partly absorb uncomfortable infrared light; the composite phase change material also possessed high latent heat up to 96.9 J g-1. In addition, 100 thermal cycle test proved that with a minor latent heat decrease, the prepared core-sheath structured smart nanofibers had good thermal stability, which overcomes the leakage problem of pure octadecane. Additionally, the 9 wt% Cs x WO3-loaded sample had an increase in tensile strength and elongation compared with the sample without Cs x WO3, indicating the good compatibility between Cs x WO3 and PVB.
Zobrazit více v PubMed
Stoppa M. Chiolerio A. Sensors. 2014;14:11957–11992. doi: 10.3390/s140711957. PubMed DOI PMC
Hu J. Meng H. Li G. Ibekwe S. I. Smart Mater. Struct. 2012;21:053001. doi: 10.1088/0964-1726/21/5/053001. DOI
Pause B. J. Ind. Text. 2016;33:93–99. doi: 10.1177/152808303038859. DOI
Jiang H. Y. Kelch S. Lendlein A. Adv. Mater. 2006;18:1471–1475. doi: 10.1002/adma.200502266. DOI
Hu J., Liu W. and Liu B., US Pat., US007780979B2, 2010
Tamura H. Tsuruta Y. Tokura S. Mater. Sci. Eng. C. 2002;20:143–147. doi: 10.1016/S0928-4931(02)00024-3. DOI
Pasche S. Angeloni S. Ischer R. Liley M. Luprano J. Voirin G. Adv. Sci. Technol. 2008;57:80–87.
Hu J., Zeng F. and Li P., US Pat., US007968083B2, 2011
Jost K. Dion G. Gogotsi Y. J. Mater. Chem. A. 2014;2:10776. doi: 10.1039/C4TA00203B. DOI
Rezaei B. Ghani M. Askari M. Shoushtari A. M. Malek R. M. A. Adv. Polym. Technol. 2016;35:21534. doi: 10.1002/adv.21534. DOI
Song S. K. Zhao T. T. Qiu F. Zhu W. T. Chen T. R. Guo Y. Zhang Y. Wang Y. Q. Feng R. Liu Y. Xiong C. X. Zhou J. Dong L. J. Energy. 2019;172:1144–1150. doi: 10.1016/j.energy.2019.02.052. DOI
Song S. K. Zhao T. T. Zhu W. T. Qiu F. Wang Y. Q. Dong L. J. ACS Appl. Mater. Interfaces. 2019;11:20828–20837. doi: 10.1021/acsami.9b04523. PubMed DOI
Kenisarin M. Mahkamov K. Renewable Sustainable Energy Rev. 2007;11:1913–1965. doi: 10.1016/j.rser.2006.05.005. DOI
Li G. Hong G. Dong D. Song W. Zhang X. Adv. Mater. 2018;30:1801754. doi: 10.1002/adma.201801754. PubMed DOI
Chalco-Sandoval W. Fabra M. J. López-Rubio A. Lagaron J. M. Eur. Polym. J. 2015;72:23–33. doi: 10.1016/j.eurpolymj.2015.08.033. DOI
Pandey A. K. Hossain M. S. Tyagi V. V. Abd Rahim N. Selvaraj J. A. L. Sari A. Renewable Sustainable Energy Rev. 2018;82:281–323. doi: 10.1016/j.rser.2017.09.043. DOI
Song S. K. Qiu F. Zhu W. T. Guo Y. Zhang Y. Ju Y. Y. Feng R. Liu Y. Chen Z. Zhou J. Xiong C. X. Dong L. J. Sol. Energy Mater. Sol. Cells. 2019;193:237–245. doi: 10.1016/j.solmat.2019.01.023. DOI
Zalba B. Marín J. M. Cabeza L. F. Mehling H. Appl. Therm. Eng. 2003;23:251–283. doi: 10.1016/S1359-4311(02)00192-8. DOI
Mohamed S. A. Al-Sulaiman F. A. Ibrahim N. I. Zahir M. H. Al-Ahmed A. Saidur R. Yılbaş B. S. Sahin A. Z. Renewable Sustainable Energy Rev. 2017;70:1072–1089. doi: 10.1016/j.rser.2016.12.012. DOI
Chen C. Wang L. Huang Y. Polymer. 2007;48:5202–5207. doi: 10.1016/j.polymer.2007.06.069. DOI
Demirbas M. F. Energy Sources, Part B. 2006;1:85–95. doi: 10.1080/009083190881481. DOI
Lu Y. Xiao X. Zhan Y. Huan C. Qi S. Cheng H. Xu G. ACS Appl. Mater. Interfaces. 2018;10:12759–12767. doi: 10.1021/acsami.8b02057. PubMed DOI
Ke H. Wei Q. Thermochim. Acta. 2019;671:10–16. doi: 10.1016/j.tca.2018.11.002. DOI
Babapoor A. Karimi G. Golestaneh S. I. Mezjin M. A. Appl. Therm. Eng. 2017;118:398–407. doi: 10.1016/j.applthermaleng.2017.02.119. DOI
Cabeza L. F. Castellón C. Nogués M. Medrano M. Leppers R. Zubillaga O. Energy Build. 2007;39:113–119. doi: 10.1016/j.enbuild.2006.03.030. DOI
Zhang N. Yuan Y. Cao X. Du Y. Zhang Z. Gui Y. Adv. Eng. Mater. 2018;20:1700753. doi: 10.1002/adem.201700753. DOI
Chen C. Wang L. Huang Y. Appl. Energy. 2011;88:3133–3139. doi: 10.1016/j.apenergy.2011.02.026. DOI
Cherif C. Tran N. H. A. Kirsten M. Bruenig H. Vogel R. eXPRESS Polym. Lett. 2018;12:203–214. doi: 10.3144/expresspolymlett.2018.19. DOI
Wan Y. Zhou P. Liu Y. Chen H. RSC Adv. 2016;6:21204. doi: 10.1039/C6RA00281A. DOI
Do C. V. Nguyen T. T. T. Park J. S. Korean J. Chem. Eng. 2013;30:1403–1409. doi: 10.1007/s11814-013-0046-3. DOI
Chalco-Sandoval W. Fabra M. J. López-Rubio A. Lagaron J. M. J. Appl. Polym. Sci. 2016;133:43903. doi: 10.1002/app.43903. DOI
Lu Y. Xiao X. D. Fu J. Huan C. M. Qi S. Zhan Y. J. Zhu Y. Q. Xu G. Chem. Eng. J. 2019;355:532–539. doi: 10.1016/j.cej.2018.08.189. DOI