Phase-transfer extraction for the fast quantification of perchlorate anions in water
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35528105
PubMed Central
PMC9074507
DOI
10.1039/c9ra08602a
PII: c9ra08602a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Supramolecular approaches for the quantitative anion analysis in water remain scarce due to the lack of receptors that effectively bind anions in this medium. Herein, we present a novel, fast and easy, supramolecular approach for a selective and quantitative analysis of perchlorate anions in water, coupling the UV-Vis spectroscopic method and phase-transfer extraction of anions by a water-insoluble anion receptor.
Zobrazit více v PubMed
Brown A. Beer P. D. Chem. Commun. 2016;52:8645–8658. doi: 10.1039/C6CC03638D. PubMed DOI
Langton M. J. Serpell C. J. Beer P. D. Angew. Chem., Int. Ed. 2016;55:1974–1987. doi: 10.1002/anie.201506589. PubMed DOI PMC
He Q. Tu P. Sessler J. L. Chem. 2018;4:46–93. PubMed PMC
Zhang M. Lin R.-L. Sun W.-Q. Liu J.-X. J. Inclusion Phenom. Macrocyclic Chem. 2018;90:173–187. doi: 10.1007/s10847-017-0777-6. DOI
Li S. Purdy W. C. Chem. Rev. 1992;92:1457–1470. doi: 10.1021/cr00014a009. DOI
Szente L. Szemán J. Anal. Chem. 2013;85:8024–8030. doi: 10.1021/ac400639y. PubMed DOI
Saeed M. A. Fronczek F. R. Hossain M. A. Chem. Commun. 2009:6409–6411. doi: 10.1039/b916099j. doi: 10.1039/B916099J. PubMed DOI PMC
Dey K. R. Horne T. Fronczek F. R. Hossain M. A. Inorg. Chem. Commun. 2010;13:1515–1518. doi: 10.1016/j.inoche.2010.08.031. PubMed DOI PMC
Kumar R. Kumar S. Singh P. Hundal G. Hundal M. S. Kumar S. Analyst. 2012;137:4913–4916. doi: 10.1039/C2AN35901D. PubMed DOI
Cai J. Hay B. P. Young N. J. Yang X. Sessler J. L. Chem. Sci. 2013;4:1560–1567. doi: 10.1039/C3SC22144J. DOI
Zhou H. Zhao Y. Gao G. Li S. Lan J. You J. J. Am. Chem. Soc. 2013;135:14908–14911. doi: 10.1021/ja406638b. PubMed DOI
Amendola V. Bergamaschi G. Boiocchi M. Alberto R. Braband H. Chem. Sci. 2014;5:1820–1826. doi: 10.1039/C3SC53504E. DOI
Kubik S. Goddard R. Kirchner R. Nolting D. Seidel J. Angew. Chem., Int. Ed. 2001;40:2648–2651. doi: 10.1002/1521-3773(20010716)40:14<2648::AID-ANIE2648>3.0.CO;2-#. PubMed DOI
Sommer F. Kubik S. Org. Biomol. Chem. 2014;12:8851–8860. doi: 10.1039/C4OB01497A. PubMed DOI
Lisbjerg M. Jessen B. M. Rasmussen B. Nielsen B. E. Madsen A. Ø. Pittelkow M. Chem. Sci. 2014;5:2647–2650. doi: 10.1039/C4SC00990H. DOI
Lisbjerg M. Nielsen B. E. Milhøj B. O. Sauer S. P. A. Pittelkow M. Org. Biomol. Chem. 2015;13:369–373. doi: 10.1039/C4OB02211D. PubMed DOI
Suk J.-m. Jeong K.-S. J. Am. Chem. Soc. 2008;130:11868–11869. doi: 10.1021/ja804845m. PubMed DOI
Berryman O. B. Johnson II C. A. Zakharov L. N. Haley M. M. Johnson D. W. Angew. Chem., Int. Ed. 2008;47:117–120. doi: 10.1002/anie.200703971. PubMed DOI
Sokkalingam P. Shraberg J. Rick S. W. Gibb B. C. J. Am. Chem. Soc. 2016;138:48–51. doi: 10.1021/jacs.5b10937. PubMed DOI PMC
Svec J. Necas M. Sindelar V. Angew. Chem., Int. Ed. 2010;49:2378–2381. doi: 10.1002/anie.201000420. PubMed DOI
Havel V. Sindelar V. ChemPlusChem. 2015;80:1601–1606. doi: 10.1002/cplu.201500345. PubMed DOI
Yawer M. A. Havel V. Sindelar V. Angew. Chem., Int. Ed. 2015;54:276–279. doi: 10.1002/anie.201409895. PubMed DOI
Vazquez J. Sindelar V. Chem. Commun. 2018;54:5859–5862. doi: 10.1039/C8CC00470F. PubMed DOI
Magnuson M. L. Urbansky E. T. Kelty C. A. Anal. Chem. 2000;72:25–29. doi: 10.1021/ac9909204. PubMed DOI
Yang Y. Huo F. Zhang J. Xie Z. Chao J. Yin C. Tong H. Liu D. Jin S. Cheng F. Yan X. Sens. Actuators, B. 2012;166–167:665–670. doi: 10.1016/j.snb.2012.03.034. DOI
Srinivasan R. Sorial G. A. Sep. Purif. Technol. 2009;69:7–21. doi: 10.1016/j.seppur.2009.06.025. DOI
Padarauskas A. Olsauskaite V. Paliulionyte V. J. Chromatogr. A. 1998;829:359–365. doi: 10.1016/S0021-9673(98)00883-8. PubMed DOI
Mellon F. A., in Encyclopedia of Food Sciences and Nutrition, ed. B. Caballero, Academic Press, Oxford, 2nd edn, 2003, pp. 3739–3749, 10.1016/B0-12-227055-X/00746-X DOI
He Q. Zhang Z. Brewster J. T. Lynch V. M. Kim S. K. Sessler J. L. J. Am. Chem. Soc. 2016;138:9779–9782. doi: 10.1021/jacs.6b05713. PubMed DOI
Zhou H. Wang Y. Guo X. Dong Y. Su X. Sun X. J. Mol. Liq. 2018;254:414–420. doi: 10.1016/j.molliq.2018.01.078. DOI
Zhu W. Jia Y. Zhang Q. Sun J. Jing Y. Li J. J. Mol. Liq. 2019;285:75–83. doi: 10.1016/j.molliq.2019.04.046. DOI
Carreira-Barral I. Mato-Iglesias M. de Blas A. Platas-Iglesias C. Tasker P. A. Esteban-Gómez D. Dalton Trans. 2017;46:3192–3206. doi: 10.1039/C7DT00093F. PubMed DOI
Mahajan S. Singh N. Kushwaha J. P. Rajor A. Chem. Eng. Commun. 2019;206:697–707. doi: 10.1080/00986445.2018.1520706. DOI
Marcelo G. A. Pires S. M. G. Faustino M. A. F. Simões M. M. Q. Neves M. G. P. M. S. Santos H. M. Capelo J. L. Mota J. P. Lodeiro C. Oliveira E. Dyes Pigm. 2019;161:427–437. doi: 10.1016/j.dyepig.2018.09.068. DOI
Hofmeister F. Arch. Exp. Pathol. Pharmakol. 1888;24:247–260.