Exploring attractor bifurcations in Boolean networks
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
MUNI/G/1771/2020.
Masarykova Univerzita
PubMed
35546394
PubMed Central
PMC9092939
DOI
10.1186/s12859-022-04708-9
PII: 10.1186/s12859-022-04708-9
Knihovny.cz E-resources
- Keywords
- Attractor bifurcation, Boolean networks, Software tool, Symbolic computation, type-1 interferons,
- MeSH
- Algorithms MeSH
- Aniline Compounds MeSH
- Benzamides MeSH
- COVID-19 * MeSH
- Gene Regulatory Networks * MeSH
- Humans MeSH
- Models, Genetic MeSH
- Naphthalenes MeSH
- SARS-CoV-2 MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 5-amino-2-methyl-N-((R)-1-(1-naphthyl)ethyl)benzamide MeSH Browser
- Aniline Compounds MeSH
- Benzamides MeSH
- Naphthalenes MeSH
BACKGROUND: Boolean networks (BNs) provide an effective modelling formalism for various complex biochemical phenomena. Their long term behaviour is represented by attractors-subsets of the state space towards which the BN eventually converges. These are then typically linked to different biological phenotypes. Depending on various logical parameters, the structure and quality of attractors can undergo a significant change, known as a bifurcation. We present a methodology for analysing bifurcations in asynchronous parametrised Boolean networks. RESULTS: In this paper, we propose a computational framework employing advanced symbolic graph algorithms that enable the analysis of large networks with hundreds of Boolean variables. To visualise the results of this analysis, we developed a novel interactive presentation technique based on decision trees, allowing us to quickly uncover parameters crucial to the changes in the attractor landscape. As a whole, the methodology is implemented in our tool AEON. We evaluate the method's applicability on a complex human cell signalling network describing the activity of type-1 interferons and related molecules interacting with SARS-COV-2 virion. In particular, the analysis focuses on explaining the potential suppressive role of the recently proposed drug molecule GRL0617 on replication of the virus. CONCLUSIONS: The proposed method creates a working analogy to the concept of bifurcation analysis widely used in kinetic modelling to reveal the impact of parameters on the system's stability. The important feature of our tool is its unique capability to work fast with large-scale networks with a relatively large extent of unknown information. The results obtained in the case study are in agreement with the recent biological findings.
See more in PubMed
Kauffman SA. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol. 1969;22(3):437–67. doi: 10.1016/0022-5193(69)90015-0. PubMed DOI
Chatain T et al. Boolean networks: beyond generalized asynchronicity. In: International workshop on cellular automata and discrete complex systems, 29–42. Springer, Cham, 2018. 10.1007/978-3-319-92675-9_3.
Fisher J et al. Synthesising executable gene regulatory networks from single-cell gene expression data. In: Computer Aided Verification, 544–560. Springer, Cham, 2015. 10.1007/978-3-319-21690-4_38.
Su C et al. Controlling large Boolean networks with temporary and permanent perturbations. In: Formal Methods, 707–724. Springer, Cham, 2019. 10.1007/978-3-030-30942-8_41.
Le Novère N. Quantitative and logic modelling of molecular and gene networks. Nature reviews. Genetics 2015. 10.1038/nrg3885 PubMed PMC
Baudin A, et al. Controlling large Boolean networks with single-step perturbations. Bioinformatics. 2019;35(14):558–567. doi: 10.1093/bioinformatics/btz371. PubMed DOI PMC
Feillet C, et al. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc Natl Acad Sci. 2014;111(27):9828–9833. doi: 10.1073/pnas.1320474111. PubMed DOI PMC
Garg A, et al. Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics. 2008;24(17):1917–1925. doi: 10.1093/bioinformatics/btn336. PubMed DOI PMC
Klemm K, Bornholdt S. Stable and unstable attractors in Boolean networks. Phys Rev E. 2005;72(5):055101. doi: 10.1103/PhysRevE.72.055101. PubMed DOI
Saadatpour A, et al. Attractor analysis of asynchronous Boolean models of signal transduction networks. J Theor Biol. 2010;266(4):641–656. doi: 10.1016/j.jtbi.2010.07.022. PubMed DOI
Zou YM. Boolean networks with multiexpressions and parameters. IEEE/ACM Trans Comput Biol Bioinf. 2013;10:584–592. doi: 10.1109/TCBB.2013.79. PubMed DOI
Beneš N et al. Formal analysis of qualitative long-term behaviour in parametrised Boolean networks. In: International conference on formal engineering methods, 353–369. Springer, Cham, 2019. 10.1007/978-3-030-32409-4_22
Abou-Jaoudé W, et al. Logical modeling and dynamical analysis of cellular networks. Front Genet. 2016;7:94. doi: 10.3389/fgene.2016.00094. PubMed DOI PMC
Dubrova E, Teslenko M. A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans Comput Biol Bioinf. 2011;8(5):1393–1399. doi: 10.1109/TCBB.2010.20. PubMed DOI
Tamura T, Akutsu T. Detecting a singleton attractor in a Boolean network utilizing SAT algorithms. IEICE Trans Fund Electron Commun Comput Sci. 2009;E92.A(2):493–501. 10.1587/transfun.E92.A.493
Devloo V, et al. Identification of all steady states in large networks by logical analysis. Bull Math Biol. 2003;65(6):1025–1051. doi: 10.1016/S0092-8240(03)00061-2. PubMed DOI
Akutsu T et al. Integer programming-based methods for attractor detection and control of Boolean networks. In: IEEE Conference on Decision and Control, 2009:5610–5617. 10.1109/CDC.2009.5400017
Qu H et al. Improving BDD-based attractor detection for synchronous Boolean networks. In: Proceedings of the 7th Asia-Pacific Symposium on Internetware. Internetware ’15, 212–220. Association for Computing Machinery, New York, NY, USA, 2015. 10.1145/2875913.2875925.
Naldi A et al. Decision diagrams for the representation and analysis of logical models of genetic networks. In: Computational Methods in Systems Biology. Springer, Cham, 2007:233–247. 10.1007/978-3-540-75140-3_16.
Klarner H, et al. Computing maximal and minimal trap spaces of Boolean networks. Nat Comput. 2015;14(4):535–544. doi: 10.1007/s11047-015-9520-7. DOI
Harvey I, Bossomaier T. Time out of joint: attractors in asynchronous random Boolean networks. In: Proceedings of the fourth european conference on artificial life. MIT Press, Cambridge, 1997:67–75
Guo W, et al. A parallel attractor finding algorithm based on Boolean satisfiability for genetic regulatory networks. PLoS ONE. 2014;9(4):1–10. doi: 10.1371/journal.pone.0094258. PubMed DOI PMC
Mushthofa M et al. Computing attractors of multi-valued gene regulatory networks using fuzzy answer set programming. In: IEEE international conference on fuzzy systems, 2016:1955–1962 . 10.1109/FUZZ-IEEE.2016.7737931
Chatain T et al. Characterization of reachable attractors using Petri net unfoldings. In: Computational Methods in Systems Biology. Springer, Cham, 2014:129–142. 10.1007/978-3-319-12982-2_10
Zhang S-Q, et al. Algorithms for finding small attractors in Boolean networks. EURASIP J Bioinform Syst Biol. 2007;2007:4–4. doi: 10.1155/2007/20180. PubMed DOI PMC
Choo S-M, Cho K-H. An efficient algorithm for identifying primary phenotype attractors of a large-scale Boolean network. BMC Syst Biol. 2016;10(1):95. doi: 10.1186/s12918-016-0338-4. PubMed DOI PMC
Cheng D et al. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. Springer, London, 2010. 10.1007/978-0-85729-097-7
Liu X, et al. Gapore: Boolean network inference using a genetic algorithm with novel polynomial representation and encoding scheme. Knowl-Based Syst. 2021;228:107277. doi: 10.1016/j.knosys.2021.107277. DOI
Zhong J, et al. Pinning control for stabilization of boolean networks under knock-out perturbation. IEEE Trans Autom Control. 2021 doi: 10.1109/TAC.2021.3070307. DOI
Acernese A, et al. Reinforcement learning approach to feedback stabilization problem of probabilistic boolean control networks. IEEE Control Syst Lett. 2020;5(1):337–342. doi: 10.1109/LCSYS.2020.3001993. DOI
Cheng X, et al. Discrimination of attractors with noisy nodes in boolean networks. Automatica. 2021;130:109630. doi: 10.1016/j.automatica.2021.109630. DOI
Zhong J, et al. Steady-state design of large-dimensional boolean networks. IEEE Trans Neural Netw Learn Syst. 2020;32(3):1149–1161. doi: 10.1109/TNNLS.2020.2980632. PubMed DOI
Shah OS, et al. ATLANTIS - attractor landscape analysis toolbox for cell fate discovery and reprogramming. Sci Rep. 2018;8(1):3554. doi: 10.1038/s41598-018-22031-3. PubMed DOI PMC
Benque D et al. BMA: visual tool for modeling and analysis of biological networks. In: Computer Aided Verification. Springer, Cham, 2012:686–692. 10.1007/978-3-642-31424-7_50
Müssel C, et al. BoolNet-an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics. 2010;26(10):1378–1380. doi: 10.1093/bioinformatics/btq124. PubMed DOI
Schwab JD, Kestler HA. Automatic screening for perturbations in Boolean networks. Front Physiol. 2018;9:431. doi: 10.3389/fphys.2018.00. PubMed DOI PMC
Klarner H, et al. PyBoolNet: a python package for the generation, analysis and visualization of Boolean networks. Bioinformatics. 2016;33(5):770–772. doi: 10.1093/bioinformatics/btw682. PubMed DOI
Berntenis N, Ebeling M. Detection of attractors of large Boolean networks via exhaustive enumeration of appropriate subspaces of the state space. BMC Bioinform. 2013;14:361. doi: 10.1186/1471-2105-14-361. PubMed DOI PMC
Helikar T, et al. The cell collective: toward an open and collaborative approach to systems biology. BMC Syst Biol. 2012;1:96. doi: 10.1186/1752-0509-6-96. PubMed DOI PMC
Klamt S, et al. Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol. 2007;1(1):2. doi: 10.1186/1752-0509-1-2. PubMed DOI PMC
Mizera A, et al. ASSA-PBN: a toolbox for probabilistic Boolean networks. IEEE/ACM Trans Comput Biol Bioinf. 2018;15(4):1203–1216. doi: 10.1109/TCBB.2017.2773477. PubMed DOI
Chaouiya C et al. Logical modelling of gene regulatory networks with GINsim. In: Bacterial Molecular Networks. Springer, Cham, 2012:463–479. 10.1007/978-1-61779-361-5_23 PubMed
Streck A et al. Comparative statistical analysis of qualitative parametrization sets. In: Hybrid Systems Biology. Springer, Cham, 2015:20–34. 10.1007/978-3-319-26916-0_2
Abou-Jaoudé W, Monteiro PT. On logical bifurcation diagrams. J Theor Biol. 2019;466:39–63. doi: 10.1016/j.jtbi.2019.01.008. PubMed DOI
Abou-Jaoudé W, et al. From structure to dynamics: frequency tuning in the p53-mdm2 network. J Theor Biol. 2009;258(4):561–577. doi: 10.1016/j.jtbi.2009.02.005. PubMed DOI
Beneš N et al. AEON: attractor bifurcation analysis of parametrised Boolean networks. In: Computer Aided Verification. Springer, Cham, 2020:569–581. 10.1007/978-3-030-53288-8_28
Benes N et al. AEON 2021: bifurcation decision trees in Boolean networks. In: Computational Methods in Systems Biology. Springer, Cham, 2021:230–237. 10.1007/978-3-030-85633-5_14
Barnat J et al. Detecting attractors in biological models with uncertain parameters. In: Computational Methods in Systems Biology. Springer, Cham, 2017: 40–56. 10.1007/978-3-319-67471-1_3
Beneš N et al. A model checking approach to discrete bifurcation analysis. In: Formal Methods. Springer, Cham, 2016:85–101. 10.1007/978-3-319-48989-6_6
Beneš N et al. Parallel parameter synthesis algorithm for hybrid CTL. Sci Comput Program. 2020;185. 10.1016/j.scico.2019.102321
Beneš N et al. Computing bottom SCCs symbolically using transition guided reduction. In: International conference on computer aided verification. Springer, Cham, 2021:505–528. 10.1007/978-3-030-81685-8_24
Shmulevich I, et al. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics. 2002;18(2):261–274. doi: 10.1093/bioinformatics/18.2.261. PubMed DOI
Kuznetsov YA. Elements of Applied Bifurcation Theory. Springer, New York, 1998. 10.1007/978-1-4757-3978-7
Wang R-S, et al. Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol. 2012;9(5):055001. doi: 10.1088/1478-3975/9/5/055001. PubMed DOI
Bryant RE. Graph-based algorithms for Boolean function manipulation. IEEE Trans Comput. 1986;35(8):677–691. doi: 10.1109/TC.1986.1676819. DOI
Safavian SR, Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern. 1991;21(3):660–674. doi: 10.1109/21.97458. DOI
Kent JT. Information gain and a general measure of correlation. Biometrika. 1983;70(1):163–173. doi: 10.2307/2335954. DOI
Hojyo S, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen. 2020;40(1):1–7. doi: 10.1186/s41232-020-00146-3. PubMed DOI PMC
Ostaszewski M, et al. COVID-19 disease map, building a computational repository of SARS-CoV-2 virus-host interaction mechanisms. Sci Data. 2020;7:136. doi: 10.1038/s41597-020-0477-8. PubMed DOI PMC
Aghamiri SS, et al. Automated inference of Boolean models from molecular interaction maps using CaSQ. Bioinformatics. 2020;36(16):4473–4482. doi: 10.1093/bioinformatics/btaa484. PubMed DOI PMC
Papin JA, et al. Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol. 2005;6(2):99–111. doi: 10.1038/nrm1570. PubMed DOI
Thakar J, et al. Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth. PLoS Comput Biol. 2012;8(1):1002345. doi: 10.1371/journal.pcbi.1002345. PubMed DOI PMC
Polak ME, et al. Petri net computational modelling of langerhans cell interferon regulatory factor network predicts their role in T cell activation. Sci Rep. 2017;7(1):1–13. doi: 10.1038/s41598-017-00651-5. PubMed DOI PMC
Wang K et al. Stability and bifurcation of genetic regulatory networks with delays. Neurocomputing. 2010;73(16):2882–92. 10.1109/ChiCC.2014.6896981. 10th Brazilian Symposium on Neural Networks (SBRN2008).
Grieco L, et al. Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput Biol. 2013;9(10):1003286. doi: 10.1371/journal.pcbi.1003286. PubMed DOI PMC
Fu Z, et al. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat Commun. 2021;12(1):1–12. doi: 10.1038/s41467-020-20718-8. PubMed DOI PMC
Gonzalez-Cotto M, et al. TREML4 promotes inflammatory programs in human and murine macrophages and alters atherosclerosis lesion composition in the apolipoprotein e deficient mouse. Front Immunol. 2020;11:397. doi: 10.3389/fimmu.2020.00397. PubMed DOI PMC
An open problem: Why are motif-avoidant attractors so rare in asynchronous Boolean networks?