Comparative whole-genome transcriptome analysis in renal cell populations reveals high tissue specificity of MAPK/ERK targets in embryonic kidney
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35550069
PubMed Central
PMC9102746
DOI
10.1186/s12915-022-01309-z
PII: 10.1186/s12915-022-01309-z
Knihovny.cz E-zdroje
- MeSH
- epitelové buňky MeSH
- ledviny * metabolismus MeSH
- lidé MeSH
- nefrony * metabolismus MeSH
- orgánová specificita MeSH
- stanovení celkové genové exprese MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: MAPK/ERK signaling is a well-known mediator of extracellular stimuli controlling intracellular responses to growth factors and mechanical cues. The critical requirement of MAPK/ERK signaling for embryonic stem cell maintenance is demonstrated, but specific functions in progenitor regulation during embryonic development, and in particular kidney development remain largely unexplored. We previously demonstrated MAPK/ERK signaling as a key regulator of kidney growth through branching morphogenesis and normal nephrogenesis where it also regulates progenitor expansion. Here, we performed RNA sequencing-based whole-genome expression analysis to identify transcriptional MAPK/ERK targets in two distinct renal populations: the ureteric bud epithelium and the nephron progenitors. RESULTS: Our analysis revealed a large number (5053) of differentially expressed genes (DEGs) in nephron progenitors and significantly less (1004) in ureteric bud epithelium, reflecting likely heterogenicity of cell types. The data analysis identified high tissue-specificity, as only a fraction (362) of MAPK/ERK targets are shared between the two tissues. Tissue-specific MAPK/ERK targets participate in the regulation of mitochondrial energy metabolism in nephron progenitors, which fail to maintain normal mitochondria numbers in the MAPK/ERK-deficient tissue. In the ureteric bud epithelium, a dramatic decline in progenitor-specific gene expression was detected with a simultaneous increase in differentiation-associated genes, which was not observed in nephron progenitors. Our experiments in the genetic model of MAPK/ERK deficiency provide evidence that MAPK/ERK signaling in the ureteric bud maintains epithelial cells in an undifferentiated state. Interestingly, the transcriptional targets shared between the two tissues studied are over-represented by histone genes, suggesting that MAPK/ERK signaling regulates cell cycle progression and stem cell maintenance through chromosome condensation and nucleosome assembly. CONCLUSIONS: Using tissue-specific MAPK/ERK inactivation and RNA sequencing in combination with experimentation in embryonic kidneys, we demonstrate here that MAPK/ERK signaling maintains ureteric bud tip cells, suggesting a regulatory role in collecting duct progenitors. We additionally deliver new mechanistic information on how MAPK/ERK signaling regulates progenitor maintenance through its effects on chromatin accessibility and energy metabolism.
Department of Medical and Clinical Genetics University of Helsinki Helsinki Finland
Helsinki Institute of Life Science University of Helsinki Helsinki Finland
Neuroscience Center Helsinki Institute of Life Science University of Helsinki Helsinki Finland
Zobrazit více v PubMed
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18. doi: 10.1038/sj.cr.7290105. PubMed DOI
McKay MM, Morrison DK. Integrating signals from RTKs to ERK/MAPK. Oncogene. 2007;26(22):3113–3121. doi: 10.1038/sj.onc.1210394. PubMed DOI
Roskoski R., Jr ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012;66(2):105–143. doi: 10.1016/j.phrs.2012.04.005. PubMed DOI
Miller AD, Curran T, Verma IM. c-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell. 1984;36(1):51–60. doi: 10.1016/0092-8674(84)90073-4. PubMed DOI
Guzowski JF, McNaughton BL, Barnes CA, Worley PF. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci. 1999;2(12):1120–1124. doi: 10.1038/16046. PubMed DOI
Boucherat O, Nadeau V, Berube-Simard FA, Charron J, Jeannotte L. Crucial requirement of ERK/MAPK signaling in respiratory tract development. Development. 2015;142(21):3801. doi: 10.1242/dev.131821. PubMed DOI
Parada C, Han D, Grimaldi A, Sarrion P, Park SS, Pelikan R, Sanchez-Lara PA, Chai Y. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence. Development. 2015;142(21):3734–3745. PubMed PMC
Dumesic PA, Scholl FA, Barragan DI, Khavari PA. Erk1/2 MAP kinases are required for epidermal G2/M progression. J Cell Biol. 2009;185(3):409–422. doi: 10.1083/jcb.200804038. PubMed DOI PMC
Scholl FA, Dumesic PA, Barragan DI, Harada K, Bissonauth V, Charron J, Khavari PA. Mek1/2 MAPK kinases are essential for Mammalian development, homeostasis, and Raf-induced hyperplasia. Dev Cell. 2007;12(4):615–629. doi: 10.1016/j.devcel.2007.03.009. PubMed DOI
Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK signaling in regulation of renal differentiation. Int J Mol Sci. 2019;20(7):1779. doi: 10.3390/ijms20071779. PubMed DOI PMC
Saxen L. Organogenesis of the kidney. Cambridge: Cambridge University Press; 1987.
Mao Y, Francis-West P, Irvine KD. Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development. 2015;142(15):2574–2585. PubMed PMC
Davidson AJ, Lewis P, Przepiorski A, Sander V. Turning mesoderm into kidney. Semin Cell Dev Biol. 2019;91:86–93. doi: 10.1016/j.semcdb.2018.08.016. PubMed DOI
Zhang H, Bagherie-Lachidan M, Badouel C, Enderle L, Peidis P, Bremner R, Kuure S, Jain S, McNeill H. FAT4 fine-tunes kidney development by regulating RET signaling. Dev Cell. 2019;48(6):780–792 e784. doi: 10.1016/j.devcel.2019.02.004. PubMed DOI PMC
Kurtzeborn K, Cebrian C, Kuure S. Regulation of renal differentiation by trophic factors. Front Physiol. 2018;9:1588. doi: 10.3389/fphys.2018.01588. PubMed DOI PMC
Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell. 2010;18(5):698–712. doi: 10.1016/j.devcel.2010.04.008. PubMed DOI PMC
Kuure S, Sariola H. Mouse models of congenital kidney anomalies. Adv Exp Med Biol. 2020;1236:109–136. doi: 10.1007/978-981-15-2389-2_5. PubMed DOI
Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3(2):169–181. doi: 10.1016/j.stem.2008.05.020. PubMed DOI PMC
Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 2006;25(21):5214–5228. doi: 10.1038/sj.emboj.7601381. PubMed DOI PMC
Li H, Hohenstein P, Kuure S. Embryonic kidney development, stem cells and the origin of Wilms tumor. Genes (Basel) 2021;12(2):318. doi: 10.3390/genes12020318. PubMed DOI PMC
O’Brien LL. Nephron progenitor cell commitment: striking the right balance. Semin Cell Dev Biol. 2018:91:94–103. PubMed
Rumballe BA, Georgas KM, Combes AN, Ju AL, Gilbert T, Little MH. Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Dev Biol. 2011;360(1):110–122. doi: 10.1016/j.ydbio.2011.09.011. PubMed DOI PMC
Short KM, Combes AN, Lefevre J, Ju AL, Georgas KM, Lamberton T, Cairncross O, Rumballe BA, McMahon AP, Hamilton NA, et al. Global quantification of tissue dynamics in the developing mouse kidney. Dev Cell. 2014;29(2):188–202. doi: 10.1016/j.devcel.2014.02.017. PubMed DOI
Park JS, Ma W, O’Brien LL, Chung E, Guo JJ, Cheng JG, Valerius MT, McMahon JA, Wong WH, McMahon AP. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev Cell. 2012;23(3):637–651. doi: 10.1016/j.devcel.2012.07.008. PubMed DOI PMC
Lindstrom NO, Carragher NO, Hohenstein P. The PI3K pathway balances self-renewal and differentiation of nephron progenitor cells through beta-catenin signaling. Stem Cell Reports. 2015;4(4):551–560. doi: 10.1016/j.stemcr.2015.01.021. PubMed DOI PMC
Lawlor KT, Zappia L, Lefevre J, Park JS, Hamilton NA, Oshlack A, Little MH, Combes AN. Nephron progenitor commitment is a stochastic process influenced by cell migration. Elife. 2019;8:e41156. doi: 10.7554/eLife.41156. PubMed DOI PMC
Watanabe T, Costantini F. Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev Biol. 2004;271(1):98–108. doi: 10.1016/j.ydbio.2004.03.025. PubMed DOI
Schmidt-Ott KM, Yang J, Chen X, Wang H, Paragas N, Mori K, Li JY, Lu B, Costantini F, Schiffer M, et al. Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol. 2005;16(7):1993–2002. doi: 10.1681/ASN.2004121127. PubMed DOI
Bohnenpoll T, Kispert A. Ureter growth and differentiation. Semin Cell Dev Biol. 2014;36:21–30. doi: 10.1016/j.semcdb.2014.07.014. PubMed DOI
Rutledge EA, Benazet JD, McMahon AP. Cellular heterogeneity in the ureteric progenitor niche and distinct profiles of branching morphogenesis in organ development. Development. 2017;144(17):3177–3188. PubMed PMC
Lefevre JG, Short KM, Lamberton TO, Michos O, Graf D, Smyth IM, Hamilton NA. Branching morphogenesis in the developing kidney is governed by rules that pattern the ureteric tree. Development. 2017;144(23):4377–4385. PubMed
Short KM, Smyth IM. Branching morphogenesis as a driver of renal development. Anat Rec (Hoboken). 2020:303(10):2578–87. PubMed
Shakya R, Watanabe T, Costantini F. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell. 2005;8(1):65–74. doi: 10.1016/j.devcel.2004.11.008. PubMed DOI
Chi X, Michos O, Shakya R, Riccio P, Enomoto H, Licht JD, Asai N, Takahashi M, Ohgami N, Kato M, et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell. 2009;17(2):199–209. doi: 10.1016/j.devcel.2009.07.013. PubMed DOI PMC
Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F. Ret and Etv4 promote directed movements of progenitor cells during renal branching morphogenesis. PLoS Biol. 2016;14(2):e1002382. doi: 10.1371/journal.pbio.1002382. PubMed DOI PMC
Li H, Jakobson M, Ola R, Gui Y, Kumar A, Sipila P, Sariola H, Kuure S, Andressoo JO. Development of the urogenital system is regulated via the 3’UTR of GDNF. Sci Rep. 2019;9(1):5302. doi: 10.1038/s41598-019-40457-1. PubMed DOI PMC
Hida M, Omori S, Awazu M. ERK and p38 MAP kinase are required for rat renal development. Kidney Int. 2002;61(4):1252–1262. doi: 10.1046/j.1523-1755.2002.00273.x. PubMed DOI
Fisher CE, Michael L, Barnett MW, Davies JA. Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development. 2001;128(21):4329–4338. doi: 10.1242/dev.128.21.4329. PubMed DOI
Ihermann-Hella A, Lume M, Miinalainen IJ, Pirttiniemi A, Gui Y, Peranen J, Charron J, Saarma M, Costantini F, Kuure S. Mitogen-activated protein kinase (MAPK) pathway regulates branching by remodeling epithelial cell adhesion. PLoS Genet. 2014;10(3):e1004193. doi: 10.1371/journal.pgen.1004193. PubMed DOI PMC
Ihermann-Hella A, Hirashima T, Kupari J, Kurtzeborn K, Li H, Kwon HN, et al. Dynamic MAPK/ERK activity sustains nephron progenitors through niche regulation and primes precursors for differentiation. Stem Cell Reports. 2018:11(4):912–28. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Sanchez-Ferras O, Pacis A, Sotiropoulou M, Zhang Y, Wang YC, Bourgey M, Bourque G, Ragoussis J, Bouchard M. A coordinated progression of progenitor cell states initiates urinary tract development. Nat Commun. 2021;12(1):2627. doi: 10.1038/s41467-021-22931-5. PubMed DOI PMC
Lindstrom NO, De Sena BG, Tran T, Ransick A, Suh G, Guo J, Kim AD, Parvez RK, Ruffins SW, Rutledge EA, et al. Progressive recruitment of mesenchymal progenitors reveals a time-dependent process of cell fate acquisition in mouse and human nephrogenesis. Dev Cell. 2018;45(5):651–660 e654. doi: 10.1016/j.devcel.2018.05.010. PubMed DOI PMC
Menon R, Otto EA, Kokoruda A, Zhou J, Zhang Z, Yoon E, Chen YC, Troyanskaya O, Spence JR, Kretzler M, et al. Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development. 2018;145(16):dev164038. doi: 10.1242/dev.164038. PubMed DOI PMC
Brunskill EW, Park JS, Chung E, Chen F, Magella B, Potter SS. Single cell dissection of early kidney development: multilineage priming. Development. 2014;141(15):3093–3101. doi: 10.1242/dev.110601. PubMed DOI PMC
Hanafusa H, Torii S, Yasunaga T, Nishida E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol. 2002;4(11):850–858. doi: 10.1038/ncb867. PubMed DOI
Hernandez VJ, Weng J, Ly P, Pompey S, Dong H, Mishra L, Schwarz M, Anderson RG, Michaely P. Cavin-3 dictates the balance between ERK and Akt signaling. Elife. 2013;2:e00905. doi: 10.7554/eLife.00905. PubMed DOI PMC
Mah SP, Saueressig H, Goulding M, Kintner C, Dressler GR. Kidney development in cadherin-6 mutants: delayed mesenchyme-to-epithelial conversion and loss of nephrons. Dev Biol. 2000;223(1):38–53. doi: 10.1006/dbio.2000.9738. PubMed DOI
Airik R, Trowe MO, Foik A, Farin HF, Petry M, Schuster-Gossler K, Schweizer M, Scherer G, Kist R, Kispert A. Hydroureternephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme. Hum Mol Genet. 2010;19(24):4918–4929. doi: 10.1093/hmg/ddq426. PubMed DOI
Reginensi A, Clarkson M, Neirijnck Y, Lu B, Ohyama T, Groves AK, et al. SOX9 controls epithelial branching by activating RET effector genes during kidney development. Hum Mol Genet. 2011:20(6):1143–53. PubMed PMC
Kumar S, Liu J, Pang P, Krautzberger AM, Reginensi A, Akiyama H, Schedl A, Humphreys BD, McMahon AP. Sox9 activation highlights a cellular pathway of renal repair in the acutely injured mammalian kidney. Cell Rep. 2015;12(8):1325–1338. doi: 10.1016/j.celrep.2015.07.034. PubMed DOI
Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell. 2005;8(2):229–239. doi: 10.1016/j.devcel.2004.12.004. PubMed DOI
Roskoski R., Jr Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol Res. 2019;142:151–168. doi: 10.1016/j.phrs.2019.01.039. PubMed DOI
Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, Arber S, Hassell J, MacNeil L, Hoshi M, et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet. 2009;41(12):1295–1302. doi: 10.1038/ng.476. PubMed DOI PMC
Kuure S, Chi X, Lu B, Costantini F. The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development. Development. 2010;137(12):1975–1979. doi: 10.1242/dev.051656. PubMed DOI PMC
Jeffrey KL, Camps M, Rommel C, Mackay CR. Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov. 2007;6(5):391–403. doi: 10.1038/nrd2289. PubMed DOI
Davies JA. The Kidney Development Database. Dev Genet. 1999;24(3-4):194–198. doi: 10.1002/(SICI)1520-6408(1999)24:3/4<194::AID-DVG2>3.0.CO;2-V. PubMed DOI
Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development. 2003;130(14):3175–3185. doi: 10.1242/dev.00520. PubMed DOI
O’Brien LL, Combes AN, Short KM, Lindstrom NO, Whitney PH, Cullen-McEwen LA, Ju A, Abdelhalim A, Michos O, Bertram JF, et al. Wnt11 directs nephron progenitor polarity and motile behavior ultimately determining nephron endowment. Elife. 2018;7:e40392. doi: 10.7554/eLife.40392. PubMed DOI PMC
Rutledge EA, Parvez RK, Short KM, Smyth IM, McMahon AP. Morphogenesis of the kidney and lung requires branch-tip directed activity of the Adamts18 metalloprotease. Dev Biol. 2019;454(2):156–169. doi: 10.1016/j.ydbio.2019.06.012. PubMed DOI PMC
Nishita M, Qiao S, Miyamoto M, Okinaka Y, Yamada M, Hashimoto R, Iijima K, Otani H, Hartmann C, Nishinakamura R, et al. Role of Wnt5a-Ror2 signaling in morphogenesis of the metanephric mesenchyme during ureteric budding. Mol Cell Biol. 2014;34(16):3096–3105. doi: 10.1128/MCB.00491-14. PubMed DOI PMC
Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367(6461):380–383. doi: 10.1038/367380a0. PubMed DOI
Costantini F. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. Wiley Interdiscip Rev Dev Biol. 2012;1(5):693–713. doi: 10.1002/wdev.52. PubMed DOI PMC
Zhang S, Lin Y, Itaranta P, Yagi A, Vainio S. Expression of Sprouty genes 1, 2 and 4 during mouse organogenesis. Mech Dev. 2001;109(2):367–370. doi: 10.1016/S0925-4773(01)00526-3. PubMed DOI
Rutledge EA, McMahon AP. Mutational analysis of genes with ureteric progenitor cell-specific expression in branching morphogenesis of the mouse kidney. Dev Dyn. 2020;249(6):765–774. doi: 10.1002/dvdy.157. PubMed DOI PMC
Stanton BR, Perkins AS, Tessarollo L, Sassoon DA, Parada LF. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. the epithelial component of the embryo to develop. Genes Dev. 1992;6(12):2235–2247. doi: 10.1101/gad.6.12a.2235. PubMed DOI
Hohenstein P, Pritchard-Jones K, Charlton J. The yin and yang of kidney development and Wilms’ tumors. Genes Dev. 2015;29(5):467–482. doi: 10.1101/gad.256396.114. PubMed DOI PMC
Pan X, Karner CM, Carroll TJ. Myc cooperates with beta-catenin to drive gene expression in nephron progenitor cells. Development. 2017;144(22):4173–4182. PubMed PMC
Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, et al. GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron. 1998;21(1):53–62. doi: 10.1016/S0896-6273(00)80514-0. PubMed DOI PMC
Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EMJ, Milbrandt J. GFRa1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron. 1998;21(2):317–324. doi: 10.1016/S0896-6273(00)80541-3. PubMed DOI
Jadeja S, Smyth I, Pitera JE, Taylor MS, van Haelst M, Bentley E, McGregor L, Hopkins J, Chalepakis G, Philip N, et al. Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat Genet. 2005;37(5):520–525. doi: 10.1038/ng1549. PubMed DOI
Kiyozumi D, Takeichi M, Nakano I, Sato Y, Fukuda T, Sekiguchi K. Basement membrane assembly of the integrin alpha8beta1 ligand nephronectin requires Fraser syndrome-associated proteins. J Cell Biol. 2012;197(5):677–689. doi: 10.1083/jcb.201203065. PubMed DOI PMC
Magella B, Adam M, Potter AS, Venkatasubramanian M, Chetal K, Hay SB, Salomonis N, Potter SS. Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf. Dev Biol. 2018;434(1):36–47. doi: 10.1016/j.ydbio.2017.11.006. PubMed DOI PMC
Williere Y, Borschewski A, Patzak A, Nikitina T, Dittmayer C, Daigeler AL, Schuelke M, Bachmann S, Mutig K. Caveolin 1 promotes renal water and salt reabsorption. Sci Rep. 2018;8(1):545. doi: 10.1038/s41598-017-19071-6. PubMed DOI PMC
He JZ, Yang BX. Aquaporins in renal diseases. Int J Mol Sci. 2019;20(2):366. doi: 10.3390/ijms20020366. PubMed DOI PMC
Gill PS, Rosenblum ND. Control of murine kidney development by sonic hedgehog and its GLI effectors. Cell Cycle. 2006;5(13):1426–1430. doi: 10.4161/cc.5.13.2928. PubMed DOI
Sandilands A, Smith FJ, Lunny DP, Campbell LE, Davidson KM, MacCallum SF, Corden LD, Christie L, Fleming S, Lane EB, et al. Generation and characterisation of keratin 7 (K7) knockout mice. PLoS One. 2013;8(5):e64404. doi: 10.1371/journal.pone.0064404. PubMed DOI PMC
Chen L, Lee JW, Chou CL, Nair AV, Battistone MA, Paunescu TG, Merkulova M, Breton S, Verlander JW, Wall SM, et al. Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq. Proc Natl Acad Sci U S A. 2017;114(46):E9989–E9998. doi: 10.1073/pnas.1710964114. PubMed DOI PMC
Pinto JP, Kalathur RK, Oliveira DV, Barata T, Machado RS, Machado S, Pacheco-Leyva I, Duarte I, Futschik ME. StemChecker: a web-based tool to discover and explore stemness signatures in gene sets. Nucleic Acids Res. 2015;43(W1):W72–W77. doi: 10.1093/nar/gkv529. PubMed DOI PMC
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI
Bouchard C, Dittrich O, Kiermaier A, Dohmann K, Menkel A, Eilers M, Luscher B. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Gene Dev. 2001;15(16):2042–2047. doi: 10.1101/gad.907901. PubMed DOI PMC
Dyson N. The regulation of E2F by pRB-family proteins. Gene Dev. 1998;12(15):2245–2262. doi: 10.1101/gad.12.15.2245. PubMed DOI
Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–349. doi: 10.1038/nature09784. PubMed DOI PMC
Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441(7091):349–353. doi: 10.1038/nature04733. PubMed DOI
Roy A, Al-Bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephro. 2015;10(2):305–324. doi: 10.2215/CJN.08880914. PubMed DOI PMC
Guo Q, Wang Y, Tripathi P, Manda KR, Mukherjee M, Chaklader M, Austin PF, Surendran K, Chen F. Adam10 mediates the choice between principal cells and intercalated cells in the kidney. J Am Soc Nephrol. 2015;26(1):149–159. doi: 10.1681/ASN.2013070764. PubMed DOI PMC
Willecke R, Heuberger J, Grossmann K, Michos O, Schmidt-Ott K, Walentin K, Costantini F, Birchmeier W. The tyrosine phosphatase Shp2 acts downstream of GDNF/Ret in branching morphogenesis of the developing mouse kidney. Dev Biol. 2011;360(2):310–317. doi: 10.1016/j.ydbio.2011.09.029. PubMed DOI
Wilson MZ, Ravindran PT, Lim WA, Toettcher JE. Tracing information flow from Erk to target gene induction reveals mechanisms of dynamic and combinatorial control. Mol Cell. 2017;67(5):757–769 e755. doi: 10.1016/j.molcel.2017.07.016. PubMed DOI PMC
Johnson HE, Toettcher JE. Signaling dynamics control cell fate in the early Drosophila embryo. Dev Cell. 2019;48(3):361–370 e363. doi: 10.1016/j.devcel.2019.01.009. PubMed DOI PMC
De S, Campbell C, Venkitaraman AR, Esposito A. Pulsatile MAPK signaling modulates p53 activity to control cell fate decisions at the G2 checkpoint for DNA damage. Cell Rep. 2020;30(7):2083–2093 e2085. doi: 10.1016/j.celrep.2020.01.074. PubMed DOI PMC
Kamioka Y, Sumiyama K, Mizuno R, Sakai Y, Hirata E, Kiyokawa E, Matsuda M. Live imaging of protein kinase activities in transgenic mice expressing FRET biosensors. Cell Struct Funct. 2012;37(1):65–73. doi: 10.1247/csf.11045. PubMed DOI
Stuart RO, Bush KT, Nigam SK. Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci U S A. 2001;98(10):5649–5654. doi: 10.1073/pnas.091110798. PubMed DOI PMC
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–628. doi: 10.1038/nmeth.1226. PubMed DOI
Brunskill EW, Potter SS. RNA-Seq defines novel genes, RNA processing patterns and enhancer maps for the early stages of nephrogenesis: Hox supergenes. Dev Biol. 2012;368(1):4–17. doi: 10.1016/j.ydbio.2012.05.030. PubMed DOI PMC
Bishop JM, Capobianco AJ, Doyle HJ, Finney RE, McMahon M, Robbins SM, Samuels ML, Vetter M. Proto-oncogenes and plasticity in cell signaling. Cold Spring Harb Symp Quant Biol. 1994;59:165–171. doi: 10.1101/SQB.1994.059.01.020. PubMed DOI
Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80(2):179–185. doi: 10.1016/0092-8674(95)90401-8. PubMed DOI
Costantini F. GDNF/Ret signaling and renal branching morphogenesis: From mesenchymal signals to epithelial cell behaviors. Organogenesis. 2010;6(4):252–262. doi: 10.4161/org.6.4.12680. PubMed DOI PMC
Walker KA, Sims-Lucas S, Bates CM. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr Nephrol. 2016;31(6):885–895. doi: 10.1007/s00467-015-3151-1. PubMed DOI PMC
Lin EE, Sequeira-Lopez MLS, Gomez RA. RBP-J in FOXD1+renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells. Am J Physiol-Renal. 2014;306(2):F249–F258. doi: 10.1152/ajprenal.00313.2013. PubMed DOI PMC
Tee WW, Shen SS, Oksuz O, Narendra V, Reinberg D. Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell. 2014;156(4):678–690. doi: 10.1016/j.cell.2014.01.009. PubMed DOI PMC
Goke J, Chan YS, Yan J, Vingron M, Ng HH. Genome-wide kinase-chromatin interactions reveal the regulatory network of ERK signaling in human embryonic stem cells. Mol Cell. 2013;50(6):844–855. doi: 10.1016/j.molcel.2013.04.030. PubMed DOI
Nadeau V, Charron J. Essential role of the ERK/MAPK pathway in blood-placental barrier formation. Development. 2014;141(14):2825–2837. doi: 10.1242/dev.107409. PubMed DOI
Choi J, Huebner AJ, Clement K, Walsh RM, Savol A, Lin K, Gu H, Di Stefano B, Brumbaugh J, Kim SY, et al. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature. 2017;548(7666):219–223. doi: 10.1038/nature23274. PubMed DOI PMC
Corpet A, Almouzni G. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol. 2009;19(1):29–41. doi: 10.1016/j.tcb.2008.10.002. PubMed DOI
Almouzni G, Cedar H. Maintenance of epigenetic information. Cold Spring Harb Perspect Biol. 2016;8(5):a019372. doi: 10.1101/cshperspect.a019372. PubMed DOI PMC
Mendiratta S, Gatto A, Almouzni G. Histone supply: multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol. 2019;218(1):39–54. doi: 10.1083/jcb.201807179. PubMed DOI PMC
Armstrong C, Spencer SL. Replication-dependent histone biosynthesis is coupled to cell-cycle commitment. Proc Natl Acad Sci U S A. 2021;118(31):e2100178118. doi: 10.1073/pnas.2100178118. PubMed DOI PMC
Claude KL, Bureik D, Chatzitheodoridou D, Adarska P, Singh A, Schmoller KM. Transcription coordinates histone amounts and genome content. Nat Commun. 2021;12(1):4202. doi: 10.1038/s41467-021-24451-8. PubMed DOI PMC
MacAlpine DM, Almouzni G. Chromatin and DNA replication. Cold Spring Harb Perspect Biol. 2013;5(8):a010207. doi: 10.1101/cshperspect.a010207. PubMed DOI PMC
Whitmarsh AJ. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochim Biophys Acta. 2007;1773(8):1285–1298. doi: 10.1016/j.bbamcr.2006.11.011. PubMed DOI
Yue J, Lai F, Beckedorff F, Zhang A, Pastori C, Shiekhattar R. Integrator orchestrates RAS/ERK1/2 signaling transcriptional programs. Genes Dev. 2017;31(17):1809–1820. doi: 10.1101/gad.301697.117. PubMed DOI PMC
Hilliard S, Song R, Liu H, Chen CH, Li Y, Baddoo M, Flemington E, Wanek A, Kolls J, Saifudeen Z, et al. Defining the dynamic chromatin landscape of mouse nephron progenitors. Biol Open. 2019;8(5):bio042754. doi: 10.1242/bio.042754. PubMed DOI PMC
Nishiyama A, Mulholland CB, Bultmann S, Kori S, Endo A, Saeki Y, Qin W, Trummer C, Chiba Y, Yokoyama H, et al. Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nat Commun. 2020;11(1):1222. doi: 10.1038/s41467-020-15006-4. PubMed DOI PMC
Wanner N, Vornweg J, Combes A, Wilson S, Plappert J, Rafflenbeul G, Puelles VG, Rahman RU, Liwinski T, Lindner S, et al. DNA methyltransferase 1 controls nephron progenitor cell renewal and differentiation. J Am Soc Nephrol. 2019;30(1):63–78. doi: 10.1681/ASN.2018070736. PubMed DOI PMC
Wang F, Ngo J, Li Y, Liu H, Chen CH, Saifudeen Z, Sequeira-Lopez MLS, El-Dahr SS. Targeted disruption of the histone lysine 79 methyltransferase Dot1L in nephron progenitors causes congenital renal dysplasia. Epigenetics. 2020;16:1–16. PubMed PMC
Reidy KJ, Villegas G, Teichman J, Veron D, Shen W, Jimenez J, Thomas D, Tufro A. Semaphorin3a regulates endothelial cell number and podocyte differentiation during glomerular development. Development. 2009;136(23):3979–3989. doi: 10.1242/dev.037267. PubMed DOI PMC
Yu J, Carroll TJ, McMahon AP. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development. 2002;129(22):5301–5312. doi: 10.1242/dev.129.22.5301. PubMed DOI
Liu J, Edgington-Giordano F, Dugas C, Abrams A, Katakam P, Satou R, Saifudeen Z. Regulation of nephron progenitor cell self-renewal by intermediary metabolism. J Am Soc Nephrol. 2017;28(11):3323–3335. doi: 10.1681/ASN.2016111246. PubMed DOI PMC
Li Y, Liu J, Li W, Brown A, Baddoo M, Li M, Carroll T, Oxburgh L, Feng Y, Saifudeen Z. p53 enables metabolic fitness and self-renewal of nephron progenitor cells. Development. 2015;142(7):1228–1241. doi: 10.1242/dev.111617. PubMed DOI PMC
Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M, et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 2015;21(3):392–402. doi: 10.1016/j.cmet.2015.02.002. PubMed DOI
Shyh-Chang N, Ng HH. The metabolic programming of stem cells. Genes Dev. 2017;31(4):336–346. doi: 10.1101/gad.293167.116. PubMed DOI PMC
Mizukami Y, Iwamatsu A, Aki T, Kimura M, Nakamura K, Nao T, Okusa T, Matsuzaki M, Yoshida K, Kobayashi S. ERK1/2 regulates intracellular ATP levels through alpha-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation. J Biol Chem. 2004;279(48):50120–50131. doi: 10.1074/jbc.M402299200. PubMed DOI
Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol. 2004;276(2):403–415. doi: 10.1016/j.ydbio.2004.09.002. PubMed DOI PMC
Belanger LF, Roy S, Tremblay M, Brott B, Steff AM, Mourad W, Hugo P, Erikson R, Charron J. Mek2 is dispensable for mouse growth and development. Mol Cell Biol. 2003;23(14):4778–4787. doi: 10.1128/MCB.23.14.4778-4787.2003. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Kuure S. Analysis of migration in primary ureteric bud epithelial cells. Methods Mol Biol. 2012;886:147–155. doi: 10.1007/978-1-61779-851-1_13. PubMed DOI
Barasch J, Yang J, Ware CB, Taga T, Yoshida K, Erdjument-Bromage H, Tempst P, Parravicini E, Malach S, Aranoff T, et al. Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell. 1999;99(4):377–386. doi: 10.1016/S0092-8674(00)81524-X. PubMed DOI
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37(Web Server issue):W305–W311. doi: 10.1093/nar/gkp427. PubMed DOI PMC
Zhao Z, Guo AY, van den Oord EJ, Aliev F, Jia P, Edenberg HJ, Riley BP, Dick DM, Bettinger JC, Davies AG, et al. Multi-species data integration and gene ranking enrich significant results in an alcoholism genome-wide association study. BMC Genomics. 2012;13(Suppl 8):S16. doi: 10.1186/1471-2164-13-S8-S16. PubMed DOI PMC
Valerius MT, Patterson LT, Feng Y, Potter SS. Hoxa 11 is upstream of Integrin alpha8 expression in the developing kidney. Proc Natl Acad Sci U S A. 2002;99(12):8090–8095. doi: 10.1073/pnas.122229199. PubMed DOI PMC
An YJ, Xu WJ, Jin X, Wen H, Kim H, Lee J, Park S. Metabotyping of the C. elegans sir-2.1 mutant using in vivo labeling and (13)C-heteronuclear multidimensional NMR metabolomics. ACS Chem Biol. 2012;7(12):2012–2018. doi: 10.1021/cb3004226. PubMed DOI
Kurtzeborn K, Kwon H, Ihermann-Hella A, Kupari J, Kuure S: Comparative whole-genome transcriptome analysis in renal cell populations reveals high tissue specificity of MAPK/ERK-targets in embryonic kidney GEO https://www.ncbinlmnihgov/geo/query/acccgi?&acc=GSE1742292022. PubMed PMC