In vitro testicular toxicity of environmentally relevant endocrine-disrupting chemicals: 2D vs. 3D models of prepubertal Leydig TM3 cells

. 2022 Jul ; 93 () : 103869. [epub] 20220510

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35550872
Odkazy

PubMed 35550872
DOI 10.1016/j.etap.2022.103869
PII: S1382-6689(22)00062-X
Knihovny.cz E-zdroje

The testis is a priority organ for developing alternative models to assess male reproductive health hazards of chemicals. This study characterized a 3D in vitro model of murine prepubertal Leydig TM3 cells with improved expression of steroidogenesis markers suitable for image-based screening of testicular toxicity. This 3D scaffold-free spheroid model was applied to explore the impact of prototypical endocrine-disrupting chemicals (EDCs) and environmental reprotoxicants (benzo[a]pyrene, 2- and 9-methylanthracenes, fluoranthene, triclosan, triclocarban, methoxychlor) on male reproductive health. The results were compared to the male reprotoxicity potential of EDCs assessed in a traditional monolayer (2D) culture. The testicular toxicity was dependent not only on the type of culture (2D vs. 3D models) but also on the duration of exposure. Benzo[a]pyrene and triclocarban were the most active compounds, eliciting cytotoxic effects in prepubertal Leydig cells at low micromolar concentrations, which might be a mechanism contributing to their male reprotoxicity.

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...